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INTRODUCTION

Finding our place in the universe was a central topic of discourse

among our ancestors who gazed up at the heavens, and remains today

on the minds of those who, from time to time, can spare a thought to

that great mystery. Yet, we can’t know our place without also knowing

what our place looks like, as, to paraphrase a certain 17th century

astronomer, to be somewhere, you need somewhere to be.
Think of it this way: to �y an airplane, you need to atleast know

where you are relative to the airport. But really you need more details,

since a world containing only your airplane and your destination, in

the empty cartesian void of a MATLAB �gure, would not do you well;

for instance, the optimal path between the two would intersect with

our planet, among other things of more or less importance. To plan

your path, you need to know about the Earth and its mountains and

valleys, cities and their skyscrapers, air tra�c, whether the runway

is covered with ice, the wind speed, and if there’s a storm up ahead.

Figuring out where you are (localization) is therefore often coupled

with �guring out what’s around you (mapping).

Along the way, you will find notes, such as this, that

point to an example usage of a particular sensor. You

can find the cited reference at the end of the article.

You can �nd many references on methods to tackle these problems,

but in this short survey I wanted to address the practical problem of

what sensor to buy. It’s not a review of sensors, like phone reviews

in a magazine, since that would be outdated by the time you read

it. Instead it’s a comparison of the trade-o�s that are likely persist

through the cycles of innovation—both in hardware and in software.
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1 BASIC CONCEPTS

1.1 Triangulation and trilateration

The position of a thing can be split into a direction and a distance away

from a reference point. If you are fortunate, both of these quantities

are known. More often though you �nd yourself in the possession of

one and lacking the other. Seafarers who navigated through night and

along the shores used the following principles to guide them in those

situations.

Figure 1: Trilateration in two dimensions: One distance measurement
gives a circle of possible positions, two leaves two possible points, and
a third is enough to select one or the other.

If you know the distance to a thing, you can be anywhere on a

three-dimensional sphere around it. Knowing the distance to a second

thing reduces that to a circle. With atleast four distances you can

compute your position unambiguously. This is called trilateration.

Figure 2: Triangulation in two dimensions

If you know the direction to a thing, you can be anywhere on a

line. If you also know the direction to a second thing, you know you

have to be at the intersection of the lines. This is called triangulation.

Although these are simple principles, the hard part is to actually

measure the direction and distance to things. Over time, people have

invented a myriad of strange devices exploiting physical phenomenon

that, hopefully, has something to do with either direction or distance.

Unfortunately, as we will see, no size �ts all.
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2 SENSORS FOR LOCALIZATION AND MAPPING

2.1 Camera

Cameras, like the one on your phone, can measure the direction to

things: each pixel captures light from a particular direction, hence,

each pixel de�nes a direction into the world. In that sense, cameras

are direction sensors. But part of the trick is not just measuring the

direction to something, but measuring the direction to a particular,

reidenti�able thing. All you get from a camera is an array of colored

pixels, and measuring the direction to the color red is not very helpful

(unless you know there aren’t other red things in the scene).

Figure 3: Arti�cial markers in the form of QR code patterns stuck to
the walls. These patterns are easily detected with image processing
libraries and have a relatively unique appearance.

[9] — a quadcopter fi�ed with a constellation of

very bright LEDs, observed and triangulated from

the camera of another quadcopter, across a canyon.

[20] — 3D-printed objects as visual landmarks.

An easy �x is to place markers in the environment, special objects

crafted to be easily identi�able and detected with image processing. A

marker can be all sorts of things: a QR code pattern (Fig. 3), a glowing

LED [9] or a 3D-printed bear [20]; anything goes, as long as it stands

out. You can also turn it around, placing markers on the robot and

cameras in the environment.

Figure 4: Naturalmarkers in the form of SIFT descriptors. One of these
is a block of pixels that has been processed and turned into a list of
numbers that is surprisingly unique and consistent across di�erent
viewpoints and lighting changes.

[31] — recognizing where you are by comparing

what you see with geo-referenced photographs...

[22] — or aerial maps.

[42] — using existing visual landmarks in the form

of common household objects

[43] — or lines

[41] — or planes

[36] — or aggregations of pixels.

If you can’t place anything, cameras or markers, in the environ-

ment, you can instead rely on what’s already there, like you would

use natural landmarks on a hiking trip. Researchers have used many

kinds of landmarks: buildings, like the Ei�el tower [39, 31]; aerial ter-

rain maps [22]; chairs and tables [42]; planes [41] and lines [43]; small

16x16 pixel image regions [36], or even 3x3 pixel regions [15].
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2.2 Spectral Camera

Spectral cameras are designed to perceive light of particularly selected

wavelengths inside or outside the visible spectrum. Ordinary cameras

are made to perceive light of particular wavelengths as well, but those

are chosen so that the resulting image matches what a human would

perceive, i.e. the visible spectrum, which might not be optimal for the

localization problem. Ordinary cameras are sensitive to wavelengths

outside the visible spectrum as well, but this is usually an undesired

e�ect so they come with �lters to block those wavelengths. For some

scienti�c endeavours those wavelengths are exactly what we want.

Figure 5: Markers for infrared cameras. (Left) IR LEDs attached to
a headset. (Middle) Retrore�ective markers, intended to be lit by an
infrared light. (Right) Dots of IR ink that absorb light of a particular
wavelength and appear as black when lit by an infrared light. Source:
iFixit, Creaform 3D and Narita et al. [37].

[37] — infrared ink dots painted on a sheet of paper

and tracked from an infrared camera.

[32] — a quadcopter fi�ed with retroreflective

markers, illuminated by an infrared light, and

tracked by an infrared camera.

Like ordinary cameras, spectral cameras can be used with arti�cial

markers, except that these markers can be made to absorb, re�ect or

emit light of the particular wavelengths susceptible by the camera.

In other words, the markers can be identi�ed by “color” outside the

visible spectrum, such as infrared [32], which makes it easier to create

markers that stand out against other stu� in the environment.

Figure 6: A 3D model of a building reconstructed solely from thermal
infrared photographs using unmodi�ed photogrammetry software,
intended for color cameras. Source: [33]

[33] — using thermal infrared pixels as “visual”

landmarks.

Spectral cameras can also use the natural appearance of the en-

vironment, but, unlike ordinary cameras, they can use variations in

“color” outside the visible spectrum as useful landmarks, or exploit the

lack of variation of particular wavelengths: for example, using ther-

mal infrared to see in the dark. But of course, like ordinary cameras, if

there is not enough light, they too are blind. Some setups add a light

source, emitting at the wavelengths of interest, to help.

4



2.3 Depth Camera

The previous two cameras can measure direction. Depth cameras can

also (or primarily) measure distance. Measuring distance solves some

issues that ordinary cameras run into, like scale ambiguity (you don’t

know if a photo was taken in a doll house or a real house) or operating

in �at-colored scenes (where it’s hard to �nd good landmarks).

Figure 7: Stereo cameras compute distances by triangulation from
two photographs, taken at a �xed distance apart.

[12] — a quadcopter carrying a stereo camera.One class of depth cameras are actually just two ordinary cameras

placed (very carefully) next to each other (Fig. 7). These don’t measure

distance directly but triangulate it from two angles, like our eyes do,

from the fact that a point in the scene appears at di�erent coordinates

in each camera based on the seperation between the cameras and the

point’s depth. If one of these is known, the other can be solved for.

Figure 8: (Left) On poorly textured surfaces it becomes impossible to
identify where a pixel in the left camera is observed in the right cam-
era, and thus impossible to determine distance. (Right) Arti�cially
introducing texture, e.g. with a light pattern projector, can help.

[44] — a structured-light depth camera fixed to the

ceiling and tracking a quadcopter from above.

These devices don’t work well if the scene lacks texture that makes

it possible to identify which pixels in the two images correspond to

the same point (Fig. 8). Some devices mitigate this by projecting a

light pattern onto the scene to add texture [50].
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Figure 9: Time-of-�ight depth cameras work by emitting signals of
light and measuring how long the signal takes to return.

[25] — a quadcopter carrying a time-of-flight depth

camera, tracking its position and mapping the

environment.

Other devices also emit light, but use it to calculate distance by

measuring the time it takes to return. These are similar to lidar sensors

(see Sec. 2.6), but make a trade-o� to have shorter range, especially in

sunlight, but higher resolution and lower price [17].

Figure 10: The high resolution of depth cameras lets you perceive thin
structures, but the short range can be problematic for localization if
there aren’t many landmarks nearby.

[52] — a quadcopter carrying a short-range depth

camera and a long-range lidar.

The range, especially outdoors, is limited by the emission power

permitted by law and ambient lighting like the sun. The short range

is problematic if an algorithm relies on a consistently large coverage

of distance measurements (Fig. 10).

Figure 11: (Left) Specular re�ections can cause objects to appear be-
hind walls. (Right) Light can bounce from both background (1) and
foreground (2) to the same detector, which has to seperate them. Some
devices are unable to distinguish these and guess the distance is some-
where in-between.
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[4] — a quadcopter carrying a depth camera and

localizing itself in a 3D model of the environment,

scanned beforehand.

Also, specular or polished surfaces can re�ect the light, so if any

light does make it back to the sensor, it is unlikely to produce a correct

distance. Smoke and dust may likewise scatter the light elsewhere, and

confuse the sensor. Another issue is that the light detectors do not

receive light from an in�nitesimal line, but from a cone of non-zero

width, so that at an edge multiple echoes of light may return to the

same detector (Fig. 11). Despite these drawbacks, active depth cameras

can be useful indoors, where surfaces are often poorly textured and

distances are suitably short.

2.4 Event Camera

Event cameras have only been commercially available since 2008. Un-

like ordinary cameras, they do not output images, but a stream of

individually timestamped pixel events: if the brightness seen by any

one pixel changes signi�cantly from the last stored value (e.g. by 10-

15%), you get an event saying if it got brighter or darker along with

(very precisely) when it occurred (Fig. 12).

Figure 12: Imagine a spinning disk with a dot. An ordinary camera
(left) would output frames of images, capturing the disk in its entirety
at a �xed rate. An event camera (right) produces an output only for
the pixels that change.

[40] — a quadcopter carrying an event camera.This quirky mode of operation gives it a number of advantages: a

microsecond timestamp resolution, low power consumption and an

ability to discern brightness changes on sunlit or shaded surfaces alike,

has attracted the attention of those fed up with the poor capabilities

of ordinary cameras, during fast motion or in high dynamic range

scenes. Indeed, there have been attempts at extending the localiza-

tion algorithms used for ordinary cameras to event cameras [40, 19],

but the asynchronous nature of its output makes it di�cult to apply

algorithms that have so far formed the backbone of computer vision.

[35] — a quadcopter carrying two event cameras.

[8] — a quadcopter with blinking LEDs, tracked

from a fixed event camera.

One way to take advantage of its unique properties is to discrimi-

nate markers in time frequency, rather than spatial- (texture) or spec-

tral frequency (color): e.g. by attaching a plate of blinking LEDs to

a robot, or in the environment [35, 8]. The camera can also be made

into an active depth sensor, by placing an IR �lter in front of the cam-

era and scanning a laser across the �eld of view [10]. The high time

resolution makes it possible to get scans of useful density even at 250

Hz, and the dynamic range makes it work in scenes containing both

very bright and very dark things.
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2.5 Light-field Camera

[13] — a track-wheel robot carrying a plenoptic

camera, mapping the environment and tracking its

position.

A photograph captures light as seen from a single point in the

world, but this is a meager description of all the light that is present,

which passes through many di�erent points. Such a richer description

of light is usually referred to as a light-�eld and a simple light-�eld, or

plenoptic, camera can be built by placing many cameras next to each

other and synchronizing them to take photographs at the same time.

This is similar to a passive stereo camera, but instead of two cameras

and only one baseline, there are many cameras and multiple baselines

in multiple directions. They can therefore be used in similar ways

for localization and mapping [49, 11] and also share some drawbacks,

such as not being able to see in darkness or estimate depth from poorly

textured surfaces—but plenoptic cameras can o�er some advantages.

Figure 13: (Left) A light-�eld camera built by stackingmany ordinary
cameras in a grid. (Right) A coin-size 4x4 light-�eld camera. Source:
[49].

For example, light-�eld cameras in use (at the time of writing)

are much smaller, even �tting inside a phone. These are made with

microscopic arrays of lenses, that interlace images from di�erent view-

points onto a single sensor: trading o� the number of views (angular

resolution) with the number of pixels available for each view (spatial

resolution). Other cameras, based on interlacing in frequency, have

also been tried, but are less popular [49] than micro lens array cameras,

which have even made it to smartphones. For example, Google’s Pixel

2 [3] has micro lenses that subdivides the sensor into two: each pixel

has two photodiodes that see slightly shifted viewpoints. Despite the

short baseline of less than 1 millimeter, it is possible to obtain useful

depth estimates up-close, although the method used is di�erent from

traditional methods designed for longer baselines [3, 6].

Figure 14: Two photos taken at a short vertical baseline: the edge
of the white surface at the top would be ambiguous in a horizontal
baseline, but can be more easily triangulated vertically.

With a smaller form factor, micro lens array cameras can be advan-

tageous over wider baseline stereo cameras, and the added number of
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views can improve robustness on self-similar textures (Fig. 14). How-

ever, the usefulness may be limited to close ranges or for rough depth

estimates because hey, short baseline [51].

2.6 Laser

Lasers are narrow beams of light that can be directed in precise an-

gles, for example by rotating a mirror that it shines at with a precise

motor (like those in spinning hard disks) or with small electronically

controlled (MEMS) mirrors.

Figure 15: Two ways to steer lasers. (Left) A “Lighthouse base station”
housing two IR laser emitters that shine into spinning drums which
re�ect and spread the lasers into vertical and horizontal sheets [1].
(Right) A MEMS mirror that can be rotated in two axes [2].

[1] — photodetectors on hand-held virtual reality

controllers, triangulated from spinning lasers.

[26] — a quadcopter carrying a large retroreflective

ball, tracked by a steerable laser

Being able to direct light very precisely means you can measure

angles very precisely, which is useful for triangulation. For example,

you can put a marker on a robot and triangulate its position by track-

ing it with lasers in the environment. If you put a bunch of markers

in a �xed constellation you can recover its orientation as well [28].

Figure 16: Types of markers. (Left) The HTC Vive hand controller
with photodetectors distributed on its surface, each wired to a central
hub [1]. (Right) Retrore�ective balls attached to quadcopters [32].

What are these markers then? Some are made of a retrore�ective

material that re�ects all light back the direction it came from, such that

a photoreceptor placed near the laser can detect the returning signal.

The markers could also be photoreceptors themselves responsible for

detecting when they are hit by a laser [26].
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Figure 17: (Left) A laser point oscillating in a Lissajous curve, gener-
ated by a sinusoidal voltage on the axes of a MEMS mirror, tracking
a retrore�ective ball attached to a quadcopter [26]. (Right) A laser
beam split into a horizontal line being swept vertically to measure a
marker’s vertical angle.

To steer a laser towards a marker, you can oscillate the beam in a

pattern and adjust its center direction based on where in the pattern

the marker is detected [26]. Alternatively, the laser can be spread into

a line that is swept over the entire space: to obtain a 3D direction, you

only need to sweep in two directions, one for each angle [28].

Figure 18: The return signal strength of a laser is a measure of the
surface re�ectivity for the wavelength of the laser. Here is shown the
resulting image when a laser is swept across a road, where the road
markings have higher re�ectivity than the asphalt. Source: [30].

[30] — laser used to capture the appearance of

street asphalt for a very specific wavelength.

If placing markers in the environment or on the robot is not an

option, the other option is to measure what’s already there. For exam-

ple, emitting laser pulses and measuring the strength of the returning

light gives a measure of the surface re�ectivity for that particular

wavelength (and angle of incidence)—kinda like a spectral camera.

Lasers can be particularly useful because you can choose the wave-

length to capture “images” (Fig. 18) that are more resilient to common

variations in visible light images, like shadows, time of day, sunlit or

overcast [30].

The second, and arguably more popular use, is to measure distance

to things. When laser is used for this, it is called lidar, or light detection
and ranging. Some lidars spin a beam in a circle very quickly, emit a

pulse of light at regular intervals and measure how long it takes to

return; giving what resembles a row of pixels in a depth camera, but

with much wider �eld of view in one direction (e.g. 360 degrees) and

more narrow �eld of view in the other (e.g. 0.1 degrees).
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Figure 19: (Left) A one-axis scanning lidar. (Right) A two-axis scan-
ning lidar, where the second axis is made by stacking layers of emit-
ter/receivers.

[53] — a quadcopter carrying a two-axis spinning

lidar.

To increase the resolution, some devices stack layers of emitter-

detector pairs [48], and spin the stack around in circle. Other setups,

especially the DIY kind, spin a single pair around in a sphere with a

second motor [46]. A third kind, called “solid state” or “scannerless”

lidar spread the light beam to cover a larger portion of the scene and

observe the returning light from multiple detectors [24], instead of

using just one laser per detector. The di�erence between this third

kind and depth cameras can get blurry, but in the market, lidar are usu-

ally rated as having low resolution but long range and wide viewing

angles, even in sunlight; while depth cameras have high resolution,

but short range, especially in sunlight [24].

Lidar does face some challenges though: distinguishing multiple

echoes from a single pulse; specular re�ections from polished surfaces

and grazing angles; attenuation or scattering in fog and smoke; and

the long range could make lidar more prone to interfere with other

laser devices [34].

Figure 20: (Left) As the lidar moves away from the object during
a scan, the measured distance will increase. (Right) If the lidar is
assumed to be stationary during the scan, this increasing distance
will result in a perceived deformation of the object: e.g. a straight
wall is perceived to be slanted.

Another issue can be caused by motion. Whereas depth cameras

can measure depth at each pixel simultanously, for lidar, even during

a single planar scan, not to mention two-axis scanning, there will be

a time di�erence between the �rst and the last range measurement. If

either sensor or object moves during this time, the computed points

will be deformed. There are ways to mitigate this e�ect, but their

success depends on the environment and type of motion [53].
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2.7 Radio

Along with light, radio waves are also part of the electromagnetic

spectrum, but its interaction with matter is qualitatively di�erently.

One di�erence from light is that radio waves can more easily penetrate

materials and participating media. Since the inability to see through

fog and smoke is a crux of lidar, replacing it with radio waves is an

appealing idea. Indeed, radar is the lidar of radio waves: emit a radio

wave, and measure how long it takes to bounce back.

Figure 21: As a radio wave interacts with matter, some of it may be
re�ected back, and some of it will continue. Compared with a laser,
the returned signal contains many more echoes, and requires more
extensive �ltering to seperate into distinct surface re�ections.

Unfortunately (but also fortunately, as we will remark upon soon),

we can’t make narrow “beams” of radio waves as easily as we can with

lasers, which reduces the angular precision with which you can send a

signal or determine where it came from. Also, the ability to penetrate,

not only fog, but walls and other objects, means that multiple echoes

become more prominent (which may or may not be desired).

[45] — a quadcopter carrying a radar.Angular precision can be improved by placing an array of radio

elements next to each other and comparing the slightly di�erent ar-

rival times, or phase di�erences, of a received signal. A similar array

can also emit waves in a narrower direction, by carefully adding de-

lays to create constructive interference in the desired direction, and

destructive interference elsewhere. But, to reach similar angular pre-

cision as lidar, these arrays have to be big [34], which makes radio

less suited as a full replacement for lidar, unless the environment has

easily distinguishable re�ecting features [45],

Figure 22: Radio waves’ ability to pass through stu� can complement
lidar in the presence of fog or smoke, which attenuate or scatter light
elsewhere. On the other hand, poor angular precision makes it less
capable as a full replacement for mapping.
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[18] — a radar compensating the reduced visibility

of lidar in fog and smoke.

On the other hand, poor angular precision is also one of its strong

points: sound is omnidirectional, but propagates slowly and is easily

attenuated; light is fast, but is likewise hard to detect when spread

out. Radio waves are fast, preserve a high signal/noise ratio over long

distances and can also di�ract around occlusions. While these proper-

ties makes radio a good complement for lidar in the presence of thick

visual obscurants, like fog [18], they also make radio very interesting

for trilateration. So interesting, in fact, that we use it for GPS.

Figure 23: Radio can be used to measure distance by broadcasting a
signal. If the receiver knows when the signal was sent, for example
by having the sender encode a timestamp in the signal, they can
calculate how long it took to get there, and thus how far it travelled.
With enough measurements, a robot can compute its own position
using the trilateration principle.

[29] — locating a robot carrying a radio receiver

from pulses emi�ed by transmi�ers in the

environment.

The wide reach of radio means that sender and receiver do not

need a narrow line of sight to communicate: e.g. to measure distance

[5, 21]. By placing radio nodes in the environment and measuring

distances, a robot can work out where it is [29], and possibly where the

nodes are [38], without worrying too badly about where it is pointing

or if there’s stu� in the way.

Radio-based localization approaches have traditionally been deemed

as expensive, inaccurate and/or noisy, but changes in regulations and

the internet of things is causing a trend of smaller and cheaper sensors.

This can potentially be used to build more accurate systems, or serve

as a cheap and �exible alternative to other sensors [29, 38].

2.8 Sound

While our hearing ability is not as sophisticated as some other crea-

tures, our brain can do some tricks and work out the angle to stu�

that are audible to us. This complements our vision, as sound can

make its way through dust, smoke or physical occluders and, unlike

our eyes, our ears work in the dark. These properties makes acoustic

localization an attractive contender.

Using sound for localization dates back to the discovery of piezo-

electricity and its application to producing and measuring ultrasonic

waves, which later became sonar : the acoustic analog of lidar and

radar. The motivation for using ultrasonic waves is that, compared

to audible waves, ultrasonic waves (20 kHz and above) can be made

to spread much less, which in turn lets you more precisely determine

its direction; a crucial bit of information for detecting submarines. Al-

though sonar could in principle be used like a lidar, there are a number

of challenges due to the physics of sound (see [27] for more details).
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Figure 24: As a sound wave propagates through space, the �rst echo
does not necessarily come from the direction the speaker is pointing,
but from the �rst point of contact between an object and the arc that
sound makes as it spreads.

First, it is hard to make a sound wave as narrow as a laser, which

reduces how well you can resolve the direction (Fig. 24). As with

radio, you can improve this by placing an array of microphones next

to each other and comparing the slightly di�erent arrival times of

the received signal [27]. You can also use an array to emit sound

in a narrow direction, by carefully delaying each signal to create an

interference pattern. However, the trade-o� between the size of such

an array and its angular precision can make them quite large [34].

Figure 25: Phase-array microphones are packs of microphones put
next to each other, maybe in a line, a circle or a volumetric grid, so
that a sound wave will reach the individual elements of the array at
di�erent times depending on its direction. The name comes from the
resulting time delay (phase shift) of the measured signals.

Second, the roughness for most indoor surfaces tends to be smaller

than the wavelength (e.g. 6.6 millimeter at 50 kHz), which causes the

sound to be re�ected; to the sound wave, every wall in your house

looks like a perfect mirror. This means you can only reliably measure

the range at perpendicular angles to things, otherwise you might see

phantom objects appearing behind walls.
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Figure 26: A spinning sonar attached to a wheeled robot (left), which
was capable of creating the map seen on the right [14].

[47] — a wheeled robot carrying a one-axis spinning

sonar, tracking walls in an o�ice-like environment.

These setbacks did not stop researchers from trying and they got

some pretty good results by making assumptions on the type of ge-

ometry in the environment [47]. But outside corridor-like environ-

ments, sonar is most often used as a “last-resort” to avoid collision

with nearby objects. The slow speed of sound also makes it di�cult

to use sonar on continuously moving platforms: for example, a round-

trip to a wall ten meters away takes as much as 60 milliseconds.

[23] — a robot carrying an ultrasonic speaker,

emi�ing pulses at regular intervals that are picked

up by microphones a�ached to the ceiling.

[16] — a robot carrying a phase-array microphone,

measuring the direction to sound sources in the

environment.

A more popular approach has been to perform triangulation, for

example, by placing microphone arrays at known locations in the

environment [23]. A target emitting sounds (natural or arti�cially

generated) can be triangulated from the set of angles measured by each

microphone. This setup can also be reversed with sound sources in

the environment and a microphone array on the target [16]. However,

the number of sources may be orders of magnitudes fewer than e.g.

visual landmarks for camera setups, which makes the problem harder,

especially in three dimensions, where the added di�culty of resolving

direction will add measurement uncertainty.

3 WHAT SENSOR DO I BUY?

You might be tempted to give up trying to consider all these alter-

natives and just buy the latest iPhone, which has presumably got lo-

calization and mapping nailed down by now. However, o�-the-shelf

devices are often aimed at a wide range of use cases, and might not

be reliable enough in your particular scenario. Many of the papers I

read while studying this subject rarely use a single sensor; instead,

they complement cameras with inertial sensors, lidar, radio beacons or

ultrasonic sensors such that, where one mode of sensing fails, another

can �ll in the gaps. This article hopefully gives an overview of what

the strengths and drawbacks are, independent of particular brands or

models, so that you may have a better clue of what sensors you should

search for.

The best solution comes from considering your particular problem,

taking advantage of domain knowledge and assumptions you can

get away with, and complementing sensors with other sensors. For

example, if you have access to a reliable map of an area, it makes little

sense to assume nothing a priori. Or, knowing that the environment is

“corridor-like”, with vertical walls from a �at �oor, can greatly simplify

the necessary sensors and algorithms [7].
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