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Abstract

Detecting and tracking moving objects is a key ingredient in building autonomous aerial vehicles
that can perform interactive tasks in a dynamic environment. This project report studies this
problem in the context of Mission 7 in the International Aerial Robotics Competition, in which a
small aerial vehicle must navigate around indoor environments, without external motion cues,
and physically interact with moving ground targets. We provide a survey of common and related
detection methods, and evaluate the theory in practice on challenging real-life data sets by
implementing a cascaded detector based on color segmentation and model-based optimization.
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Preface

The work described in this project report has been carried out in association with Ascend NTNU,
a student organization with the annual goal of participating in the International Aerial Robotics
Competition, the longest running university-based competition for autonomous aerial vehicles.
In this competition, students participate to push the boundaries of technology in missions that
require robotic behaviour never before demonstrated by a �ying vehicle. Ascend NTNU �rst
participated in August 2016, claiming both Best Performance and Best Team T-Shirt Design
awards at the American venue, and is currently aiming to defeat the current mission in 2017.

The very �rst mission was held when fossile-fueled helicopters were the platform of choice, and
challenged its participants to pick up a disk and place it at a designated area — a feat regarded
as almost impossible for a fully autonomous �ying robot at the time. Over three years, the
teams improved their entries until one team, at last, was able to move a single disk. Twenty-�ve
years and six completed missions later, the seventh and current mission involves autonomously
navigating an indoor arena while avoiding moving obstacles and herding ten robotic vacuum
cleaners to a designated area, without any external sensors like motion tracking systems or GPS.

While a �aky WiFi connection prevented us from demonstrating our full capabilities at the
actual venue, our full-scale tests at home a week earlier are quite memorable. Our quadrotor
had an impressive hardware design and could autonomously �y in any desired path in the
arena while avoiding obstacles and detecting the targets. Despite demonstrating many of the
required behaviours, there are still problems that must be solved before the remaining behaviour
can be integrated. Robust localization at low heights, fully autonomous take-o� and landing,
obstacle detection at a wider �eld of view, and more accurate target detection, to name the some.

This project report is my contribution to the target detection. My goal throughout this project has
been to make a detector that can run completely on-board and reliably detect targets without
false positives. This could be combined with a tracking algorithm to estimate the heading and
motion of the targets, that is necessary for strategic planning and controlling the quadrotor.
Although there is much work left, I hope that the literature study provides useful reading of the
many possibilities that exist and that my work so far can inspire better solutions in the future.

Trondheim, December 2016
Simen Haugo
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1 Introduction

In which we de�ne the aim of this report.

1.1 Motivation

Micro aerial vehicles (MAV) o�er high mobility for a low cost, and provide an ideal robotic
platform for a wide range of applications, including aerial photography, autonomous in-
spection of hazardous areas, and search and rescue. Despite this, there are still many chal-
lenges involved in building aerial vehicles that can autonomously perform meaningful
tasks in man-made environments. In particular, detecting and tracking moving objects is
necessary to react to changes in the environment and to interact with other objects. While
this is already a fairly involved problem, and also a hot area of research within computer
vision, further di�culties arise when the platform itself is moving in indoor environments
without external motion cues.

1.2 Problem speci�cation

This project report studies the problem of detecting moving objects from a MAV in the con-
text of Mission 7 of the International Aerial Robotics Competition (IARC), where MAVs are
expected to autonomously interact with moving targets and herd them across a goal line, as
shown in Figure 1. The aim of this report is to provide a literature survey of related work
and a description and evaluation of our own solution to the detection problem. The work
is done in association with Ascend NTNU, a student organization currently comprised of
28 members with the annual goal of competing in IARC.

The hardware platform is a quadrotor built by Ascend NTNU and equipped with a down-
ward facing �sheye camera, whose view is shown in Figure 2, that is capable of providing
high framerate video. Additional sensors include a gyroscope, accelerometer and a laser
range�nder, used by an on-board �ight controller to estimate the quadrotor’s orientation
and height above ground.

We evaluate our solution on recorded data from the competition held in August 2016 and
from our own tests, where we manually piloted our quadrotor through various maneuvers
and interacted with the targets. These data sets present di�cult challenges for detection
and tracking, including noise in the estimated camera orientation and position, multiple
targets, red herrings, targets entering and leaving the �eld of view, missing video frames,
and large viewpoint changes over short periods of time.
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Figure 1:Mission 7 consists of modified iRoomba robots of two kinds, tall obstacles and short targets.
In total, there are four obstacles and ten targets. The targets have a front bumper and a top plate (col-
ored red or green) connected to a sensor. When either is activated, the robot will turn a programmed
angle and continue in a straight line. Participants must exploit this behaviour to guide the targets across
a designated edge of the arena.

Figure 2: Our quadrotor has a downward facing fisheye camera, with a field of view of more than 180
degrees, capable of capturing video at 60 frames per second at 1280×720, or 120 frames per second at
640×480. We want to use this camera to detect the targets, both red and green, allowing the quadrotor
to plan a herding strategy based on their motion, and interact with their touch sensors through visual
servoing.
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1.3 Report outline

Chapter 2 gives an overview of common camera-based object detection methods, as well
as prior attempts at solving the particular IARC problem. Chapter 3 presents our attempt
based on research presented in Chapter 2. Chapter 4 evaluates our solution and Chapter 5
summarizes the report and suggests future work.

1.4 Notation

Our main notation is summarized in Table 1.

Vectors written inline with the comma notation expand to column vectors

p = (x, y, z) :=


x
y

z



Components of a vector x ∈ Rn are accessed by subscript 1 through n

x = (x1, x2, ..., xn )

If n ≤ 3 we use subscript x, y, z
ω = (ωx ,ωy ,ωz )

We use the numerator layout when di�erentiating quantities by vectors, that is, for

p ∈ Rn

x = x(p) ∈ Rm

s = s(p) ∈ R

we write

∂s/∂p =
[
∂s/∂p1 ∂s/∂p2 ... ∂s/∂pn

]

and

∂x/∂p =



∂x1/∂p
∂x2/∂p

...

∂xm/∂p



=



∂x1/∂p1 ∂x1/∂p2 ... ∂x1/∂pn
∂x2/∂p1 ∂x2/∂p2 ... ∂x2/∂pn

...

∂xm/∂p1 ∂xm/∂p2 ... ∂xm/∂pn
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Symbol Meaning
M Model image
I Input image
∇I Input image gradient
W Geometric warp function
φI Input image descriptor
φM Model image descriptor
t = (tx , ty ) 2D pixel coordinate in model image
s = (u,v) 2D pixel coordinate in input image
δs 2D pixel displacement in input image
E Objective function
R Regularizer
g Gradient
r Residual
θ Parameters
θ̂ Estimated parameters
δθ Small parameter update
δθ̂ Estimated parameter update
po 3D point in object coordinates
pc 3D point in camera coordinates
Rc
o Rigid-body rotation

Tc
o Rigid-body translation

Hc
o Rigid-body transformation

π Camera projection
ξ = (ω,v) Twist
J Interaction matrix

Table 1:Main notation
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2 Related work

In which we de�ne the target detection problem and conduct a literature survey.

2.1 Problem de�nition

We de�ne the problem of interest as detecting and tracking moving objects from a moving
platform in partially unknown indoor environments using a single RGB camera, where the
objects of interest are the iRoomba target robots1. By detecting we mean determining the
3D rotation and translation, henceforth referred to as the pose, of each target present in a
single video frame. By tracking we mean maintaining the identities of each target while
they are visible in the video and determining time-dependent properties like their velocity
and mode of motion. Solving this problem will be useful for planning strategic paths and
actions, and interacting with the targets through visual servoing. Although our focus in
this project report is limited to detection, we have conducted the survey with the mindset
that the detection algorithm is to be combined with a tracking algorithm, hence it is part of
the problem of interest.

There are several constraints that should be noted. The arena consists of a �at �oor, where
anything with lesser degrees of �atness than that of the �oor is likely an object of inter-
est. There is an imperfect grid pattern on the �oor, which can — and has been — made of
pretty much anything, ranging from loose strips of fabric that �utter about from the wind
produced by the quadrotor, to white tape that re�ect the twinkling ceiling lights. We have
limited information about the pose of our camera, restricted to noisy measurements of its
height and orientation, and linear acceleration and angular velocity. Although we are given
information about the apperance of the iRoomba targets, their appearance is susceptible to
change on a short notice2.

From the above, we can extract some key aspects of our problem, that may limit the appli-
cability of certain existing solutions:

• A moving camera means that we cannot easily seperate static geometry from
moving objects in the image. We must also cope with vastly di�erent viewpoints,
such as looking straight down at the target from one meter altitude, or looking at it
sideways while near the ground.

• The indoor environment means that approaches assuming the camera is at high
altitudes, or equivalently, that the objects are far away, would operate outside their

1If we are able to apply our solution to the obstacle robots, then that is an unintended bonus e�ect.
2The top sensor on the robot has already undergone one such modi�cation, which was an unwelcome sur-

prise to one of the participants who had calibrated their algorithms to the early design.
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intended domain. Moreover, the lighting conditions are beyond our control, and we
should expect to deal with phenomenon like specular highlights.

• The platform is a drone with fast dynamics and the solution must be able to keep
up with its motion. The unreliability of the WiFi environment, of which we have di-
rect experience, means that o�oading work is infeasible, and that the solution should
be capable of running on-board. These aspects put constraints on the computational
cost of the solution.

• The unknown pattern of the �oor means that we should be prepared for a variety
of textures and colors in the image. For example, the pattern may consist of high
frequency noise, which can throw o� an edge detector looking for sharp transitions
— it may contain shapes that resemble circles, perhaps even similiar in scale to the
robots — or it could contain colors that are very similiar to the top plates, making it
di�cult to distinguish objects solely on color.

We can also make some handy simpli�cations. For example, since the �oor is �at, if we
know the height and orientation of the camera, we can compute the 3D location of any
pixel in the image belonging to the �oor itself, or any object at a known height above the
�oor — information that would otherwise require 3D sensing. Both the constraints we
listed above, and the allowable simpli�cations that follow from them, have guided us in our
search for prior work that we describe next.

2.2 Overview of detection methods

This section provides an overview of literature on detection methods. Although some
tracking methods are involved, they have not been the focus of the study.

2.2.1 Common terminology

The following is a rough categorization of the di�erent guises the detection problem has
gone under in the literature we have found:

• Recognition or Classification: These terms are often used in machine-learning
literature, where a database of labelled examples of objects is available, and one
wants to determine which of these objects are present in a given image, perhaps
localizing them with rough bounding boxes.

• Detection or Localization: These terms often indicate that the author is more
concerned with the accurate position the object, for example, its position and rota-
tion in 3D space, the exact region of pixels that make up its silhouette, or a bounding
box in the image.

• Segmentation: This term refers to dividing an image into regions of di�erent cate-
gories. For example, assigning a label to each pixel that describes what type of object
that pixel belongs to. The simplest case is that of binary segmentation, where a re-
gion is either background (not the object) or foreground (the object).
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To paraphrase Szeliski [47]: If we know what we are looking for, the problem is one of de-
tection. If we have a list of similiar looking objects, we are trying to recognize an instance.
If we have no idea what we might be looking at, the problem is one of category recogni-
tion. Our problem is most related to detection and localization literature, because we are
interested in the target’s position and orientation in 3D space.

Another closely related topic to object detection is camera localization. On one hand, we
want to estimate the pose of an object relative to the camera, on the other, we want to
estimate the pose of the camera relative to a scene. These problems converge to the exact
same problem when the scene itself is the object of interest, and are otherwise linked by
sharing many underlying techniques. For example, Simultaneous Localization and Mapping,
or SLAM, estimates the pose of a viewer in an unknown environment (localization) and
simultaneously builds a 3D model of the environment (mapping). SLAM could be used to
build a 3D model of the object of interest as well as track its pose relative to the camera.
For example, Crivellaro et al. [10] compare their object detection algorithm against LSD-
SLAM [17], Prisacariu et al. [39] compare theirs against PTAM [24]. Meka et al. [31] track
rigid objects with PTAM, and use their (otherwise completely unrelated) algorithm to
retexture surfaces.

During our research we developed a rough categorization of detection approaches:

• Model-based — Model-free

• 3D — 2D

• Rigid — Deformable

Model-based methods assume that the appearance of the object is known, usually in the
form of textures or 3D CAD meshes. Model-free methods do not require an a priori model,
and typically only care about the 2D segmentation of objects, whereas model-based meth-
ods are often after the object’s position and orientation in 3D space. Models can either
be rigid, perhaps linking several rigid parts together in a kinematic chain, or deformable,
like a piece of paper being twisted. In light of this categorization we focus our survey on
model-based 3D pose estimation methods for rigid objects.

2.2.2 Common methods

Several surveys have been done and we eyed out two that are much cited and one that is
very recent. Lepetit and Fua (2005) [25] review model-based 3D tracking of rigid objects.
They recognize three families of approaches using edges, templates and point features. Yil-
maz et al. (2006) [50] review both detection and tracking, leaning more toward the tracking
side of things, and consider four categories of detection algorithms using point features,
segmentation, background subtraction, and supervised classi�ers. Marchand et al. (2016)
[28] review detection algorithms, in the context of localizing a camera for arti�cial reality,
but many of the algorithms are applicable, or were even created for, object tracking. We
have summarized the main types of detection methods found in these surveys next.
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Edge-based methods try to align the projected contour of a 3D model against edge points
in the images, by minimizing the sum of squared distances as a nonlinear optimization
problem over the pose parameters. These methods are computationally e�cient, but they
su�er when the model is geometrically simple and texturally complex, and may get stuck
in local minima when the image contains clutter. For more details about these methods, we
refer the reader to [25] and [28], which cite several popular papers.

Region-based methods try to �x the problems of edge-based methods by considering
the internal structure of the object. For example, template matching uses a texture of the
object and searches for its best �t in the input image. We will revisit these methods in Sec-
tion 2.4. A commonly noted problem with region-based methods is their fragility against
unmodelled lighting artifacts and occlusions.

Feature-based methods try to combine the best of edge-based methods and region-based
methods, by estimating the object pose from a sparse set of local texture descriptors. The
sparsity make these methods robust against noise and occlusions, while not completely
disregarding texture gives greater disambiguation power. Moreover, unlike iterative region-
based methods, feature-based methods can provide an e�cient means of initializing a pose
estimate from a single frame, which is a prerequisite for tracking. Region-based methods
typically need to be given an initial guess that is reasonably close to the true pose, and as
such they need an external initialization process. We refer the reader to [28], which covers
classical and recent feature descriptors and matching techniques.

Segmentation-based methods try to divide the image into background and foreground.
Classical methods, such as region-growing or thresholding, label pixels as background
or foreground based solely on individual pixel colors [47], and can therefore run fast on
modern hardware, but are fragile against unmodelled lighting (such as specular highlights
or global illumination). Nevertheless, they can detect objects from a single frame, and are
viable if one can eliminate false positives and improve their accuracy. We will revisit these
classical methods in Section 2.3. Another segmentation cue is motion. For example, if the
camera is static, one can determine which pixels belong to moving objects by comparing
images across frames and “subtracting” the background [19, 41, 36].

Voting-based methods estimate the location of the object center by casting votes from
local parts in the image. The Hough transform (see [32] for a survey) is a popular kind
of voting method that was originally devised to detect lines, but has later been extended
to detect circles and ellipses or even arbitrary 2D shapes. Although it is reputable for its
robustness, its computational cost grows impractical quickly for objects more complex than
lines or circles, and reducing this cost is still a hot research topic.

2.2.3 IARC team papers

To �nd solutions for our speci�c problem, we searched for papers that more or less satis�ed
the constraints we described in the chapter introduction. The work we found can all, to
some degree, be classi�ed under the categories of the previous section. We begin with the
most obvious source: the team papers from the IARC symposium.
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Huang et al. (2014) [20] attempt to track the iRoomba targets from a downward facing
camera. Their method detects targets each frame using a discriminative classi�er (SVM)
on a sparse feature descriptor (HOG), trained on positive examples of the robots, taken at
di�erent viewpoints and lighting conditions, and negative examples of backgrounds. They
track targets with a particle �lter that uses color histograms as the observation model, and
estimate bounding boxes around each target. Their method appears to work reliably, but
the documented results are limited to downward facing footage near one meter altitudes,
so it is unclear how well it would work from low altitude viewpoints.

Nakamura and Johnson (2016) [33] present a complete system for Mission 7 that (1)
identi�es and tracks targets, (2) controls a UAV to land on moving targets, and (3) localizes
the UAV in the indoor environment. However, they augment the robots with �ducial mark-
ers, which indicates that their focus is veered to the tracking and landing problem. Their
key contribution on the tracking side is that they consider the three motions modes of the
targets by running three Kalman �lters and estimating the likelihood of each mode. We
doubt we can apply their detection algorithm, since we cannot augment the robot appear-
ances, but their tracking approach is relevant for future work.

2.2.4 Other closely related work

At the time of writing, none of the IARC teams have demonstrated a successful detection
and tracking system for the competition, according to the o�cial website, although a team
at the Chinese venue (2016) supposedly managed to interact with the robots, but to what
degree the interaction was autonomous is unclear since their paper is not published. We
therefore look outside the IARC domain for other successful systems, focusing on those
that share some key aspects of our problem that we described in the chapter introduction.

Helgesen (2015) [19] and Rodrigues et al. (2012) [41] both use a background sub-
traction scheme to detect and track moving objects from a �ying vehicle. Since the cam-
era itself is moving, they cannot subtract background pixels simply by looking at succes-
sive frames, and there is a need to seperate changes in the image caused by the motion of
the camera from those caused by moving objects. To do this, both methods estimate the
camera motion to predict a �ow �eld of pixel velocities for the background motion. This
�ow �eld is compared with a �ow �eld measured by tracking features between successive
frames. Pixels with �ow vectors that di�er from the predicted �ow �eld indicate motion
against the background, and are subsequently clustered into objects to be tracked. Both
methods rely on objects to contain features that can be tracked across frames, and assume
that their motion is su�ciently large to appear di�erent from the background. Their meth-
ods may therefore not immediately apply to us, but the idea of comparing �ow �elds is
interesting nonetheless, and could be worth pursuing.

Prisacariu and Reid (2012) [39] combine image segmentation and 2D to 3D pose track-
ing with a known 3D model in PWP3D. By rendering a signed distance �eld of the silhou-
ette of a 3D model they obtain an approximate segmentation of the image that is used to (a)
iteratively update the pose parameters to maximize the discrepency between a statistical
background and foreground model, and (b) update the background and foreground mod-
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els using the image data. By adapting the model dynamically their method can be robust
against unmodelled lighting e�ects and noise. However, their models are color histograms,
and therefore cannot disambiguate poses of geometrically symmetric objects, even if the
texture itself is non-symmetric. Prisacariu and Reid solve the ambiguity by using di�er-
ent views (from multiple cameras), while Tjaden et al. [49] suggest, as an improvement
of PWP3D, to include a photometric term in the cost function to include the inner struc-
ture. The idea of adapting the model during runtime is relevant to us, since our targets
contain a few aspects that are di�cult to model statically. If we can accept ambiguity in the
estimated heading we could perhaps apply this software directly to our case.

Kalal et al. (2012) [22], similar to the above, also use an adaptive strategy to update a
foreground and background model, but represent the object as a set of 2D image patches of
positive and negative examples, and propose a learning framework to update the models.
Again, the adaptation can include intermittent lighting e�ects and noise in the model.
However, the authors note that the algorithm does not cope well with rotation that is not
around the optical axis, and that it only handles single targets. We are curious as to how
well it deals with the large viewpoint changes in our case, and how it could be extended to
track multiple targets without mixing tracks.

Crivellaro et al. (2015) [11] present a 3D pose detection and tracking method with
a �xed model, and obtain robustness against lighting e�ects and occlusion by splitting
the object into distinguishable parts that can be detected individually and combined into
a re�ned pose estimate for the collection. Their method can detect objects from single
frames, and appears to be robust against large occlusions and orientations, but runs in 150
milliseconds on a high-end desktop computer, which is an order of magnitude too slow for
detection and tracking at video rate.

Choi and Christensen (2012) [7] combine an edge-based tracker with feature match-
ing in a multiple pose hypothesis formulation, based on particle �ltering, to track com-
plex (like car doors) 3D objects. By considering multiple pose hypotheses they are robust
against false edge correspondences during tracking, which has been a notorious problem
for edge-based methods. They note that their method works well in cluttered backgrounds
and sparsely textured objects, and outperforms state-of-the-art. Although their method is
expensive, the authors suggest that it can be sped up with GPU acceleration.

2.2.5 Summary of overview

In summary, there are lots of possibilites, and judging by �gures and graphs they all seem
inherently promising, but we think that the success or failure of any particular method is
still highly dependent on the context in which it is tested. It would be nice if we could test
all of the methods we found, but we did not make time for that. We therefore chose two
particular approaches that seemed promising, and decided to power through all the subtle
problems that followed. In the remainder of this chapter, we present our literature study
for these two approaches.
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2.3 Detection by color segmentation

Color has long been used as a segmentation cue in classical computer vision tasks where
the object appearance is well known. For example, in identifying objects on a conveyor
belt under controlled lighting. Although these methods are less applicable outside control-
lable circumstances, they can o�er very fast runtimes and initialization-free detection. In
this section, we brie�y discuss classical color segmentation techniques, and strategies for
coping with uncontrolled lighting.

2.3.1 Thresholding and dealing with lighting

Algorithms for grouping pixels of similiar appearance have been around since the begin-
ning of computer vision. We refer the reader to [47, Chapter 5] for an overview of the most
prevalent methods, such as mean-shift, graph-cuts, region-splitting or region-merging. We
looked at thresholding, which can e�ciently label individual pixels as either foreground or
background. The simplest form of thresholding is uniform thresholding, where pixels are
compared against a constant value. Foreground pixels can then be merged into objects by
some clustering method. Uniform thresholding can easily fail if the lighting is unknown,
since specular highlights, shadows and global illumination cause the mean intensity of the
image to change, preventing the applicability of a constant threshold.

Global lighting e�ects, such as the time of day or strobing lights, cause the color of all
pixels to change by approximately the same amount. A uniform threshold may still be per-
fectly able to segment the object, but it would need to change along with the illumination.
Histogram equalization or normalization could compensate for global e�ects [36, Chap-
ter 3], but can be expensive to use each frame. Color space transformations can seperate
intensity from hue [36, Appendix 4], and allow for thresholding over illumination invari-
ant colors, but their applicability depends on the energy spectrum of the light and the
re�ectance properties of the object [18].

Local e�ects cause abrupt color changes among neighbor pixels and can happen if the
surface material is not di�use. Zickler et al. (2008) [53] isolate specular re�ection from
di�use lighting using a linear transformation of RGB values, but they assume the lighting
color is known and that the surface re�ectance �ts a particular model. Shen et al. (2013)
[42] isolate specular highlights at 20 Hz on a CPU, which looks promising. Meka et al.
(2016) seperate shading from re�ectance using dense optimization, and achieve impressive
and real-time results, but require an Nvidia Titan X, which is too powerful for an on-board
computer.

If none of the above strategies are applicable, the foreground segmentation may get holes
or fail completely. Holes cause problems for clustering, since objects can be super�uously
split up and (falsely) give multiple detections. Morphological operators [47, Chapter 3] can
�ll holes in a second pass, or one could use region-growing strategies to allow for dynamic
thresholds during the segmentation [47, Chapter 5]. Alternatively, segmentation and clus-
tering could be done jointly to incorporate spatial coherency in the color segmentation.
Mean-shift [30] is one such method, which tries to �nd clusters in a higher dimensional
feature-space (e.g. 5D for pixel location and its color), but it has a high computational cost.
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2.4 Detection by image alignment

Many detection methods rely on extracting a sparse set of features from the image. An al-
ternative is to forgo this indirection and use the complete image as is. This leads to direct
methods that, as we will see, can be much more accurate than their indirect counterpart
and can succeed in cases where feature extraction fails. The tradeo� we make, in using
more data, is the potentially large computational cost and sensitivity to occlusion and un-
modelled lighting e�ects. In this section, we study direct methods for estimating 3D poses,
and look at ways to lower the computational cost and increase robustness.

2.4.1 History and applications

Recovering poses directly from images, without the need for an intermediate representa-
tion, can be traced back almost 40 years ago to the work of Lucas and Kanade [27], where
they present a method that can estimate pose parameters directly from pixel intensities.
Variants of their method has since been used in a wide range of applications like virtual
and augmented reality, video stabilization, object tracking, visual odometry and SLAM.

One application of the Lucas-Kanade method (LK), is direct image alignment, in which the
goal is to minimize the visual di�erence between two images by warping one into the
other [46]. If both images are photographs taken by a camera from di�erent viewpoints,
the LK method can be used to estimate the relative camera pose between the images. This
is related to visual odometry, which aims to track the motion of a camera using video.
Visual odometry has traditionally been solved using feature extraction and matching across
images, but the advent of high framerate cameras and increased computational power
has made direct methods an attractive alternative [1]. A similiar problem is visual SLAM,
which aims to simultaneously recover the 3D structure of the environment. Engel et al.
[17, 16] introduce dense 3 visual SLAM, which uses the LK method to track the camera and
recover a dense 3D model of the environment. In both of these cases, a direct approach
gave higher accuracy and robustness over an indirect, feature-based method.

Direct image alignment can also be used for model-based object tracking (See [28, Chap-
ter 4.2] for a brief survey). In particular, if one of the images is a photograph of an object,
and the other is a reference image of the same object, the LK method can be used to es-
timate the pose of the object in the photograph. The reference image could be static, or
dynamically generated. The latter is sometimes referred to as Analysis by Synthesis or
Inverse Rendering [26], in the sense that the object pose is estimated by synthesizing or ren-
dering an image of the object as it would have been seen by a camera, and comparing the
result with the observed photograph. It is also referred to as generative reconstruction [40],
in the sense that the object pose (or other high-level information) is reconstructed by gener-
ating an image that, again, is compared with the observation. In any case, the comparison
produces an error, de�ned by some appropriate metric, that is used to iteratively update
the pose estimate. Aside from the object pose, the estimation variables may include any
aspect of the image formation process, such as surface material properties, the location and
intensity of light sources, or camera calibration parameters.

3See [16] for a description of the terms direct, indirect, sparse and dense.
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Object tracking with direct image alignment is becoming an attractive alternative over
feature-based methods among some researchers, who argue that extracting and matching
features has a tendency to fail outside of ideal conditions [10]. For example, sparsely tex-
tured surfaces (such as the clean-looking iRoombas) or motion blur (a common artifact
from vibration on UAVs) may prevent the extraction step from �nding enough features
[10, 29]. On the other hand, feature-based methods can provide global detections from a
single frame, whereas direct methods are local and require an initial guess. Szeliski [46,
Chapter 4.4] suggests that this property makes direct methods useful for re�ning the result
from a global method (such as color thresholding) to compute a more accurate pose.

Since we probably need very accurate 3D pose estimates and our solution must deal with
large viewpoint changes, vibrations and objects with mostly �at textures, pose re�nement
by direct image alignment seemed like a good idea to pursue. We therefore dedicate the
remainder of this chapter to a study of this method, presenting �rst the basic methodology,
and proceed to discuss extensions that make the method robust in real-life scenarios.

Our introduction is based on the following sources: Irani and Anandan (1999) [21] give an
introduction to the basics of direct parameter estimation on pixel intensities; Szeliski (2006)
[46] gives a more thorough exposition and a comparison with feature-based methods;
Matthews et al. (2002-2004) [4], in their �ve-part series, present e�cient formulations (1),
robust cost functions (2), models for linear appearance variations (3), priors on parameters
(4) and extensions to non-planar surfaces (5). As we continue through the chapter, we will
refer to more recent work for particular improvements that are not covered in the above.

2.4.2 Pose estimation with image alignment

This section introduces the basic concept of using image alignment, or inverse rendering,
for parameter estimation. We assume that we have a photo of an object taken by a camera,
that a reference model of the same object is available (for example, a textured 3D mesh or a
2D texture), and that there exist some true parameters of an image formation process (that
we de�ne) such that the synthesized image looks similiar to the observed photo. Our goal
is to estimate these parameters.

We will �rst consider the basic geometric image alignment problem, similiar to that of
Lucas and Kanade [27], where the model is a 2D texture and the unknowns of the im-
age formation process is limited to a deformation of the model into the photo, in other
words, intrinsic camera parameters, scene lighting, etc, are assumed to be known. Let
I : R2 → R be the photo taken by the camera, henceforth referred to as the input, and
letM : R2 → R be the model. The input and the model are sampled at subpixel locations
to produce grayscale intensities, using some sampling scheme like bilinear or bicubic in-
terpolation. LetW (t; θ) : R2 → R2 be the warp function, which takes a pixel t ∈ R2 in
the model coordinate frame and maps it to a subpixel location s ∈ R2 in the input coor-
dinate frame, for a vector of warp parameters θ. For example, if the object is located at an
unknown translation θ = (θ1, θ2) in the image, but is otherwise correctly scaled and rotated
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according to our reference model, the warp may be

W (t; θ) =


u + θ1
v + θ2



In general, the warp can have an arbitrary number of parameters. For instance, a planar
rotation and translation can be described with three parameters, and the transformation
a plane undergoes when projected and viewed from two di�erent viewpoints can be de-
scribed with six [47, Chapter 2]. Moreover, the warp can include other geometric processes,
like intrinsic camera calibration parameters describing lens distortion, or deformation
parameters describing non-rigid surfaces [35], but it is unable to describe photometric pro-
cesses, like lighting or motion blur. In Section 2.4.3 we discuss appropriate warps for 3D
pose estimation.

Figure 3: The warped model is compared with the input, and an error is computed at each pixel. The
true warp parameters are assumed to coincide with the global minimum of the cost function.

Once an appropriate warp function has been decided, the goal is to �nd the best parame-
ters, such that the warped model looks most similiar to the photographed object, in terms
of a similarity metric. One of the simplest similarity metrics is the sum of squared intensity
di�erences (SSD), which assumes that the pixel intensities are constant under the warp, a
property referred to as brightness constancy [21]. In other words, it assumes that the model
appears as is in the photo. As we discuss later, this assumption rarely holds in practice, and
there are alternative similarity metrics that are more robust against unmodelled e�ects.

In terms of the SSD similarity metric, the goal is to minimize the sum of squared intensity
di�erences between the warped model and the input, with respect to the parameters θ

min
θ

E(θ) = min
θ

∑
ti ∈DM

(I(W (ti ; θ) −M (ti ))2 (1)

where ti ∈ DM is the set of pixels in the model texture (texels). The objective function
E is sometimes referred to as photometric error [1] or an energy function [48]. This is a
nonlinear least squares problem, because there is no inherent linear relation between image
intensities and pixel coordinates; they are, in general, unrelated quantities. Hence, we
cannot immediately solve the equation for θ, as one can for linear least squares problems.
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One way to solve Eq. (1) is to simply search over all possible values of θ and choose the
one with the lowest error. While this might be a feasible strategy for small problems, an
exhaustive search will quickly become impractical as the number of pixels and parameters
increase (see [9] for a complexity analysis). Although graph-based approaches can perform
e�cient global searches using dynamic programming [6], we do not study them in this
report.

If a global search is infeasible, a local method is the clear alternative. The Lucas-Kanade
method is an example of a local method, and solves Eq. (1) by iteratively approximating the
error by a quadratic around the current parameter estimate, and solving a weighted linear
least squares problem at each iteration [4]. In particular, let θ̂ be the parameter estimate at
the current iteration, and let δθ be a small update. Local methods aim to minimize∑

ti

(I(W (ti ; θ̂ + δθ) −M (ti ))2

with respect to the update δθ. The Lucas-Kanade method linearizes the error terms with a
�rst order Taylor expansion around θ̂ to obtain the quadratic error approximation∑

ti

(I(si ) +
∂I

∂s
∂W

∂θ
δθ −M (ti ))2 (2)

where si =W (ti ; θ̂) are pixels warped using the current parameter estimate, ∂I∂s = ∇I is
the image gradient, and ∂W

∂θ is the Jacobian of the warp function 1 1This terminologyis commonlyfound in theliterature [46].

. Intuitively, the image
gradient describes how the image changes with respect to the pixel coordinates, and the
warp Jacobian describes how pixel coordinates change with respect to the warp parameters.
The validity and accuracy of the linearization

I(W (ti ; θ̂ + δθ) ≈ I(W (ti ; θ̂)) +
∂I

∂s
∂W

∂θ
δθ

is a concern that has been brought up in recent literature 2 2See Bristow [6]and Alismai [1].. Naturally, we cannot expect
the linearization to hold for large displacements, but in a naive implementation the range
of validity can be impractically small. As we discuss in Section 2.4.5, this issue can be mit-
igated with hierarchical estimation. Nevertheless Eq. (2) is a linear least squares problem,
and can readily be minimized by di�erentiating and equating to zero, giving the solution

δθ̂ = − *
,

∑
i

gig
T
i

+
-

−1 ∑
i

giri (3)

where

gTi =
∂I

∂s
∂W

∂θ

�����s=si,θ=θ̂
(4)

ri = I(si ) −M (ti ) (5)

As the reader might notice from Eq. (3), the Lucas-Kanade method is similiar to the Gauss-
Newton method for solving nonlinear least squares problems [47, 37]. Following common
optimization terminology, gi and ri are called the gradients and the residuals, respectively,
and the symmetric matrix ∑

i

gig
T
i
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is the (Gauss-Newton approximation of the) Hessian of the objective function Eq. (1). The
solution Eq. (3) is the step that leads to the extremum of the quadratic approximation, and
is called the Gauss-Newton step direction. One concern with the Gauss-Newton method is
that the Hessian may not be positive de�nite (it could even be negative de�nite, in which
case the step is in the direction of increasing error). The Levenberg-Marquardt method is
a popular modi�cation of the Gauss-Newton method that adds a damping matrix to the
Hessian to ensure positive de�niteness [37], and has been discussed in terms of the Lucas-
Kanade algorithm in [4, Part 1]. Finally, the Lucas-Kanade method repeatedly solves Eq. (3)
for a small parameter update, and adds the update to the current estimate

θ̂ ← θ̂ + δθ

until some convergence test applies, for example, that | |δθ | | is su�ciently small [4].

In summary, the Lucas-Kanade method estimates a set of geometric deformation parame-
ters, such that a model is aligned with a region in the input photo. The alignment error is
represented by a photometric error taken over each pixel in the model and the correspond-
ing warped pixel in the input, and is minimized by linearizing the residuals with respect to
the warp parameters, and iteratively solving for small parameter updates. There are several
concerns with this approach that we brie�y summarize below and discuss in the remainder
of this chapter.

Robust cost functions: The sum of squared intensity di�erences (SSD) as a similarity
metric relies on the brightness constancy assumption. In particular, it assumes that sur-
faces are Lambertian and that there are no unknown shading e�ects. Consequently, SSD
is not robust against outliers and therefore tends to perform badly in practice [10]. In Sec-
tion 2.4.6 we discuss robust estimation techniques for rejecting outliers, and in Section 2.4.7
we discuss alternative similarity metrics that can be made robust to certain lighting e�ects.

Efficient formulations: The process presented in this section requires recomputing the
Hessian at each iteration (except for simple warps), which can be costly. In Section 2.4.4 we
discuss alternative formulations of the geometric image alignment problem, which allow
for signi�cant speedups by precomputing parameters.

Coarse-to-fine estimation: The accuracy of the �rst order linearization can be very
low for detailed images or large pixel displacements. This means that the initial guess for
the parameters must be very close to the correct solution in order to avoid getting stuck
in local minima (incorrect solutions). In Section 2.4.5 we discuss hierarchical strategies,
commonly called coarse-to-�ne estimation, that mitigate this issue while dramatically im-
proving speed and widening the region of convergence.

Beyond simple warps: We assumed that all other aspects of the image formation process
were known. In some cases, we can bene�t from including other aspects of the image for-
mation process as optimization variables. For example, Engel et al. [16] include intrinsic
camera calibration parameters in their optimization to allow for online re�nement. Park et
al. [38] explicitly model motion blur to track 3D objects undergoing fast motion, or similar-
ily, fast camera motion or vibration (a common problem on MAV platforms).
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Complex models: The model presented in this section was a 2D texture. In general, the
model can be as simple as a textured plane, such as a landing pad [29], or it can be as com-
plex as a deformable triangular mesh, such as a golf ball hitting a metal bat or a �owery
cushion being impaled by a pen [35]. In these cases, reference models can easily be made
manually, for example, by taking a photograph or modelling a 3D mesh. If the model in-
cludes many complex parameters, like shading coe�cients, generating the reference model
by hand can be impractical. An alternative is to automatically generate reference models
from examples using machine learning techniques. For example, Thies et al. [48] use im-
age alignment to track facial expressions in a monocular RGB video, and use thousands of
parameters to model the geometric shape and re�ectance properties. Reference faces are
learned in an o�-line process using principal component analysis, and are recalled during
run-time for tracking.

Sampling: In practice, the image gradients are computed stochastically by �nite di�er-
ences (like central di�erences or Sobel �ltering). What method is most accurate? Moreover,
sampling the images with bicubic sampling can produce more accurate results, but is more
costly. Is it worth it? Alismai [1] studies various choices that are not commonly adressed,
for instance, whether bicubic sampling is worth the additional cost over bilinear sampling,
and how di�erent gradient estimation methods fare against each other. Although their
conclusion appears to be that bicubic sampling does not hold any advantage over bilinear
sampling (and is therefore not worth the additional cost), and that Sobel or Scharr �lters
had no appreciable advantage of central di�erences, it is nonetheless important to be aware
of the choices that exist.

Photometric calibration: Pixels in the image are not purely functions of incoming
light hitting the camera sensor. The imaging process of digital cameras contains numerous
noise sources, such as value quantization, additive noise due to thermal properties of the
elctronics (camera read noise), the darkening of edges (vignetting), or the distortion caused
by (for example) a rolling shutter. As noted by Newcombe [34], geometric calibration is
well understood and almost always performed, while photometric calibration remains
widely ignored. Although feature-based methods are robust against this omission, it imme-
diately breaks the brightness constancy assumption for direct methods [34]. If the reader
is interested, Szeliski [47, Chapter 10] reviews many aspects of photometric calibration. A
practical application to dense visual SLAM can be found in [34], where they use a simple
photometric camera model that incorporates exposure time, vignetting, read noise and a
gamma function.

2.4.3 Warp functions for pose estimation

In order to estimate the 3D pose of a rigid-body object, the warp must describe how points
on the object surface are projected into the image to form pixels. A homography describes
this process end-to-end, by assuming a pinhole projection [47, Chapter 2], but in doing
so, it is not easily extended to arbitrary camera projections or constrained 3D poses, nor
is it directly applicable to non-planar objects. Alternatively, the warp can seperate the
two transformations, describing �rst a 3D-to-3D rigid-body transformation, and a 3D-to-
2D image projection. Together, they de�ne the geometric transformation from surface
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points in the model to pixels in the photo. As alluded to in the previous section, both of
these transformations can be included in the parameter estimation, but for now we assume
that the projection is �xed, while the rigid-body transformation contains the unknown
parameters. We refer the reader to either of [44, 8, 47] for an introduction to rigid-body
transforms, and to [12] for a review of warp functions in the Lucas-Kanade framework.

Estimating rigid-body transforms is no simple ordeal, as the 4 × 4 matrix does not lend
itself well to optimization problems [5], due to the constraints needed to maintain a valid
transformation matrix. We therefore prefer a minimal parametrization, as these can be
estimated without imposing constraints. Although parametrizing translation is simple,
parametrizing rotations gets quite hairy. Discussions around this can be found in any
book concerning rigid-body motion, such as [8, 47], su�ce to say, the common approach is
to use either Euler angles, axis-angle or unit quaternions.

Several authors [14, 49, 17, 16, 7, 43, 34] use an axis-angle parametrization — or in more
common terms, the Lie algebra of the Lie group of rigid-body transformation matrices
— to represent the small pose update that is iteratively composed with a 4 × 4 absolute
transformation matrix. The axis-angle vector is a minimal parametrization, and is therefore
easily applicable for unconstrained optimization. Some authors [39] use quaternions, and
noticed that, although they have the disadvantage of being overparametrized and requiring
renormalization, they were a better alternative than axis-angle in their case. However,
there appears to be disagreement on this, since [49] later claim that their implementation
of the software in [39] performed better with axis-angle.

2.4.4 E�cient formulations

There are many ways of approximately solving Eq. (1), the iterative Lucas-Kanade method
being one of them. The LK method is sometimes referred to as a gradient-based approach,
in contrast to graph-based approaches [6]. Although gradient-based approaches have many
desirable properties, such as implementation simplicity and computational speed, they are
only local methods and require a decent initial estimate. On the other hand, while an ex-
haustive brute-force search is usually out of the question, e�cient graph optimization
methods, like dynamic programming, can be applied to solve for the globally optimal pa-
rameters in polynomial time, if certain constraints can be imposed on the parameters [6].

Aside from the original formulation of the Lucas-Kanade method [27], it was later discov-
ered that the cost function could be reformulated in four di�erent ways, depending on the
direction of the warp (forward or inverse), and how the parameters are updated in each
iteration (additive or compositional) [4]. This resulted in four new formulations: Forward
Additive (FA), Inverse Additive (IA), Forward Compositional (FC) and Inverse Composi-
tional (IC). These methods are reviewed by Baker et al. (2004) in [4], where it was shown
that IC allows the Hessian and the gradients to be precomputed once, as opposed to recom-
puted in each iteration, allowing for signi�cant performance increase. The E�cient Second
Order Minimization (ESM) method, introduced a couple of years later, aims to combine the
best of inverse and forward composition, and is discussed in [9] along with a review on all
�ve methods.
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It was discussed in [4, Part 5] that the IC algorithm can easily be extended to the matching
of 3D volumetric textures, but doing so for 3D planar surfaces violates one of the underly-
ing assumptions. This is unfortunate, since it is exactly the case where the warp combines
a 3D pose transformation followed by a 2D projection. On the other hand, although their
implementation details are not available, Crivellaro et al. [10] use both IC and ESM in, what
appears to be, the 3D pose estimation scenario. We therefore suspect that it is possible, per-
haps with some approximation, to apply IC to the 3D estimation problem, but we have not
looked into this any further.

2.4.5 Hierarchical parameter estimation

At the heart of the Lucas-Kanade method is the linearity assumption, whose validity a�ects
the size of the convergence region. Intuitively, it requires that the image intensity at nearby
pixel is linearly related to the pixel displacement

I(s + δs) ≈ I(s) + ∇Iδs

For this approximation to hold, it is necessary that the image is su�ciently smooth, or
likewise, that the displacement does not exceed the region in which the linearity holds.
For images with high frequency content, this region can be quite small, and as such the
initial parameter estimate must be very close to the correct solution. This can be limiting
in practice, since if such a good initial estimate were available, we might not have a need
for improving it in the �rst place!

The allowable pixel displacement can be improved by �ltering away high-frequency com-
ponents in the image data. This is used in most image alignment methods, and goes under
the name of hierarchical or coarse-to-�ne estimation [46, 4]. A common strategy is to gen-
erate power-of-two image pyramids, each level in the pyramid being a �ltered and down-
sampled version of the previous level [29]. The highest detail level is the original image,
the second-highest is downsampled by a half in each dimension after �ltering, and so it
repeats for a speci�ed number of levels. The number of levels appears to depend on the use
case. Szeliski claims that important details are blurred away after two or three levels [46],
although Engel et al. [17] noted that starting at a very low resolution of only 20 × 15 pixels
helps to increase the convergence radius.

The coarse-to-�ne strategy is not restricted to the image data; it can also be applied to the
complexity of the parameter variables. As suggested in [45, 46], Martinez et al. [29] apply
the coarse-to-�ne strategy to both the input images and the motion model. Their motiva-
tion is that the lowest detail of the image pyramid does not contain enough information
to estimate a large number of parameters, thus leading to unstable behaviour. The authors
use one motion model per level in the image pyramid, starting with translation (2 parame-
ters) for the lowest detail level, followed by translation+rotation (3 parameters), a similarity
transform (4 parameters) and a homography (8 parameters) for the most detailed level.

One method of e�ectively decreasing the degrees of freedom, without the additional com-
plexity of managing multiple motion models, is to augment the cost function Eq. (1) such
that certain parameters of the update are encouraged to stay close to zero, as proposed
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in [4]. For example, we can penalize updates away from zero, or equivalently, penalize
solutions far away from the previous iterate, by adding a quadratic term to the total cost:

E(θ) =
∑
ti

(
I(W (ti ; θ)) −M (ti )

)2︸                           ︷︷                           ︸
Data

+ (θ − θ̂)T R(θ − θ̂)︸                ︷︷                ︸
Regularizer

(6)

This procedure is often called regularization [48], and the latter term is called a regularizer,
whose role is to encourage certain properties of the solution, distinguishing it from the
data term, whose role is to maximize �tness against the data. The term is also called a prior,
when the cost function is built from statistical principles, in which case it represents the a
priori probability of certain solutions.

2.4.6 Robust parameter estimation

It is often stated that the quadratic cost function Eq. (1) is not robust against outliers [45,
47, 51]. This is troublesome, especially in computer vision, because measurements are often
corrupted with few, but large, outliers, caused by the presence of multiple structures [45].
For example, outliers of one structure, say an odd piece of white near an iRoomba, can be
the inliers of another, say a piece of tape or a specular highlight.

Robust estimation techniques were designed to cope with outliers. We refer the reader
to [51] and [45] for a review of the main techniques, RANSAC, Kalman �ltering and M-
estimators being some of them. RANSAC is a random sampling technique and is very
popular in feature matching [25], but has, to our knowledge, not been used in the Lucas-
Kanade framework. M-estimators, on the other hand, are prevalent in many papers we
found, and replaces the quadratic cost function with a subquadratic curve ρ∑

i

r2i →
∑
i

ρ(|ri |)

The new cost function can be written as the iteratively reweighted least squares problem [4]∑
i

wir2i (7)

where the weights wi = ρ′(|ri |)/|ri | are treated as constants during each iteration and al-
ternatingly recomputed as θ is updated. Some common choices for ρ are discussed in [51].
In our survey we �nd Cremers et al. use the Huber weighting in their direct visual SLAM
system (LSD-SLAM); Thies et al. [48] use the L2,1 norm on photometric residuals in their
face tracker; Ngo [35] consider both Huber and Tukey weighting; Alismai [1] suggest using
the Huber weighting for coarse registration, and shifting to Tukey upon convergence.

M-estimators like Huber and Tukey have a tuning constant which is related to the breaking
point at which residuals are viewed as likely outliers. According to Zhang [51, Chapter 9.4],
this constant should be chosen based on a robust estimate of the residuals’ standard de-
viation to obtain optimal statistical e�cience, that is, to achieve the same e�ciency as a
least-squares in the presence of only Gaussian noise.
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2.4.7 Dealing with lighting and occlusion

The robust estimation techniques in the previous section might not help if most of the data
appear as outliers. To illustrate, consider the image shown in Figure 4a, which has been
corrupted by constant gain and bias to produce the image in Figure 4b. This corruption
could, for example, be caused by dynamic exposure in the camera. Figure 5 shows the cost
function surface with the Huber-weighted intensity di�erence metric, where the model
is cropped from Figure 4a and edited to remove the shiny bits, and the warp is a 2D trans-
lation θ. Notice how, although the correct global minimum is still present, the signal to
noise ratio is much lower for the corrupted case, which makes it di�cult to distinguish true
alignments from false alignments.

(a) Original (b) Brightened
Figure 4: Original input image (left) corrupted with a constant gain and bias brightness effect (middle).
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(b) On brightened input
Figure 5: Huber-weighted intensity difference cost surfaces for Figure 4a (left) and Figure 4b (right).

One way to cope with lighting e�ects is to explicitly include them in the image formation
model. The gain and bias model, introduced by Lucas and Kanade [27] and discussed in
part 3 of [4], assumes input pixels are corrupted by a common, but unknown, multiplica-
tive and additive term. Estimating these additional parameters requires linear regression,
which can be costly [46]. Moreover, it is unable to describe local e�ects, like specular high-
lights, although this could be partially solved by combining multiple local gain and bias
models. Alternatively, if an accurate map of the incoming lighting (an irradiance map) were
available, one could more accurately predict the object appearance using some surface
illumination model like Blinn-Phong or Cook-Torrance. Thies et al. [48] and Ngo [35] rep-
resent scene irradiance with Spherical Harmonics coe�cients, and estimate the coe�cients
during runtime to realistically render a tracked surface. Silviera and Malis [43] use radial
basis functions and demonstrate tracking even under strong specular highlights.
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Another option is to preprocess the input to obtain a lighting invariant representation, that
can then be aligned with the model under the brightness constancy assumption. For exam-
ple, global gain and bias can be removed by preprocessing the input to have zero mean and
unit variance, while local e�ects can be removed by bandpass �ltering [34]. However, if the
problem is that the brightness constancy assumption does not hold, maybe we shouldn’t
rely on it in the �rst place, and use a di�erent similarity metric instead. Several alternatives
have been suggested in the literature, for example, the Normalized Cross Correlation (NCC)
and Mutual Information (MI) metrics. Both are robust against extreme local e�ects, but are
complex to implement and costly [34]. Sum of Conditional Variances (SCV) tolerates less
extreme e�ects, but is simpler to implement [12].

Aside from the similarity metric, we could replace the image intensities themselves. This
is the idea behind dense feature descriptors, which replace intensities by a neighborhood op-
erator. The simplest example of which is the image gradient, which is invariant to constant
biases (since the bias disappears in the �nite di�erence). Several descriptors are described
and compared by Ngo [35] and Alismai [3]. Crivellaro et al. (2014) [9] presented Gradient-
Based Descriptor Fields (GBDF) and demonstrated robustness against strong specularities
and global lighting. Alismai (2016) [2] noticed that GBDF does not handle rotations and
created Bit-Planes (BP), which performs similiarily in the no-rotation case, but outperforms
it otherwise. Meanwhile, Ngo (2016) [35], presumably unaware of BP, suggests a �x that
makes GBDF rotation invariant.

To illustrate the potential advantage of dense descriptors, consider Figure 6, which shows
the cost surfaces for the previous example for the Huber-weighted GBDF metric. Unlike
the intensity metric, GBDF is more or less invariant to global gain and bias e�ects, and the
signal to noise ratio is clearly preserved.

These are not justthe same figureincluded twice(we checked)
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Figure 6: Huber-weighted GBDF cost surfaces for Figure 4a (left) and Figure 4b (right).

Dense descriptors can be combined with any similarity metric, like SSD, MI, NCC or M-
estimators. We may therefore write the cost function Eq. (1) in a more general form

E(θ) =
∑
i

d
(
φI (W (ti ; θ)), φM (ti )

)
(8)

where d is the similarity metric, and φ is the feature descriptor. For example, φI (s) = I(s)
and d(φa , φb ) = 1

2 (φa − φb )2 gives the usual sum over squared intensity di�erences. For a
dense desciptor, φ may be a vector valued function, and d will need some distance metric
on the vector space, like the Hamming distance [2] or the Euclidean distance [9].

29



The validity of linearizing dense descriptors is a concern that has been brought up in liter-
ature. Bristow and Lucey (2016) [6] arrive at the surprising result that (a) dense features are
in-fact well suited for gradient-based optimization and (b) performs better than pixel inten-
sity matching, despite the Taylor approximation being less accurate. Alismai et al. (2016)
[3] compare various dense descriptors and claim that they are well suited for linearization.

Ngo [35] compares several combinations of descriptors and similarity metrics, and �nds
that MI and NCC on intensities, although robust against errors, su�er from many local
minima and narrow convergence regions, indicating that they are not robust against poor
initial guesses. Meanwhile, GBDF coupled with an M-estimator is both robust and has a
wide convergence region. SSD on intensities was the worst performer, and failed to con-
verge in many cases.

Finally, although dense descriptors are applicable as lighting invariant descriptors, they
fail to cope with occlusion. Ngo (2016) [35] reviews several approaches, and presents a
real-valued relevancy score that predicts which pixels of the model are occluded, using pre-
viously good alignments. However, such occlusion masks (in particular, binary masks) can
cause problems for linearization at occlusion boundaries. Rhodin et al. (2015) [40] represent
opaque objects as translucent media with a smooth Gaussian density distribution, turning
visbility into a smooth and di�erentiable phenomenom, but they require the occluder to be
part of the estimation model (for example, if the object is a kinematic chain of body limbs,
or if the occluder is a seperate, but known, object).

2.5 Summary

Currently, many pose estimation methods rely on detecting and matching point features.
These methods are popular thanks to their robustness against occlusions, lighting e�ects
and camera calibration errors (photometric ones in particular). Unfortunately, these meth-
ods tend to break down when the surface of interest is sparsely or repetitively textured or
blurred or out of focus.

Direct pixel-based methods overcome these problems by dense matching on multiple levels
of detail, and are becoming an attractive alternative to feature matching, with promises
of higher accuracy and robustness in cases where feature extraction fails. However, these
methods can be computationally expensive and require a good model of the image forma-
tion process. Moreover, dealing with occlusion and lighting is regarded to be more di�cult.

In this section we introduced the Lucas-Kanade method as a direct pixel-based approach
to pose estimation, and discussed many extensions to improve computational speed and
robustness. The method requires an initial pose estimate, so we brie�y discussed color
segmentation for the purpose of isolating the colored top plates of the targets, although
any of the other related work could also be used to generate initial guesses.
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3 Our solution

3.1 Overview of our solution

Our solution to the target detection problem uses the theory on direct image alignment
and color segmentation presented in the previous chapter. After trying several classical
approaches, like feature matching or circle detection, but struggling to achieve the accu-
racy and robustness necessary for the IARC mission, we found that image alignment gave
promising results immediately, and was therefore an approach that we pursued. To ini-
tialize the image alignment, we segment the top plates based on their distinct color and
compute coarse initial pose estimates by inverse projecting their pixel centers back into the
world, using the camera height and orientation measured by on-board sensors.

The general �ow of our solution is given below.

Step 1 — Image retrieval and preprocessing: Video frames are processed into image pyra-
mids of power-of-two size reductions, with a �xed number of levels of detail. The color
segmentation and the image alignment use di�erent data formats and therefore have dif-
ferent preprocessing steps. These are described in more detail in the respective method’s
chapter.

Step 2 — Detection by color segmentation: Each frame is scanned for pixels that are suf-
�ciently red or green, corresponding to the colored top plates of the targets, and the re-
sulting pixels are grouped into clusters by connected components. This method provides
global detection, but su�ers from false positives and lacks the accuracy needed to perform
precise interactions.

Step 3 — Re�nement by direct image alignment: A textured model of the target is �tted
to the input image by directly minimizing the weighted sum of per-pixel photometric
error between the input image and the reprojected model, using iterative weighted Gauss-
Newton optimization. This method eliminates false positives from the above detector and
also estimates more accurate 3D poses.

Step 4 — Tracking: Although we did not implement this yet, tracking naturally �ts at the
end of this pipeline, as it can improve robustness, performance and is also necessary to
estimate target velocity. For example, the image alignment lends itself particularly well to
tracking, as estimates can be initialized from previous frames and thereby require fewer
iterations, since the targets don’t move much between successive frames.

This chapter presents details regarding our color segmentation and direct image alignment
implementation. We model the image formation process for our camera in Section 3.2, as
it is required for direct image alignment, and describe our camera calibration procedure
in Section 3.3. We then describe our implementation of the Lucas-Kanade method for lo-
cal pose re�nement in Section 3.4, and our algorithm for global detection based on color
segmentation in Section 3.5.
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3.2 Modelling the image formation process

Direct image alignment requires a model of our image formation process, which describes
how the target robots appear in the image when viewed through our �sheye camera. We
omit lighting and shading, and model the targets as static textured planes that are geomet-
rically warped into the input image by a 3D-to-2D rigid-body transformation, described in
Section 3.2.2, and a 3D-to-2D camera projection, described in Section 3.2.1.

3.2.1 Camera models

One of the simplest camera devices is called the pinhole camera, and consists of a light-tight
box with a tiny hole at one end. When uncovered, the hole will allow light to pass through
and hit a piece of photographic paper. Despite its simplicity, the pinhole camera is still
useful as a model of many cameras of today, even though the insides of a modern digital
camera are substantially di�erent from the traditional pinhole box. In the pinhole model,
points in the scene are mapped to points in the image through perspective projection by
intersecting rays with the viewing plane. This mapping is often derived from the triangle
similarity shown in Figure 7a. In particular, let (x, y, z) be the 3D point in the camera frame
and (u,v) be the projected image point, then the pinhole perspective model gives:

(u − u0)
f

=
x
−z

(v − v0)
f

=
y

−z

where f , the distance between the camera and the viewing plane, is called the focal length,
and (u0,v0) is the principal point. This mapping can also be expressed in polar coordinates:

u = r cos φ
v = r sin φ

where φ is the angle of the projected point in the uv plane. For the pinhole projection, φ
is identical to the incident ray’s angle in the xy plane, while the distance from the image
center is proportional to the tangent of the incident angle:

r = f tan θ

Written in this form, the drawback of the pinhole model becomes apparent: The projected
point blows up to in�nity as the incident angle tends to 90 degrees. We would need an
in�nitely short focal length, or an in�nitely large lens, to describe cameras of 180 degree
FOV using the pinhole model. To allow for high �eld of view — without in�nitely large
lenses, which would hardly be suitable for a MAV — we need to abandon the notion of
intersecting rays with a viewing plane, and instead consider a viewing sphere. Therefore,
a more suitable model of projection, illustrated in Figure 7b, is one that maps intersection
points on the viewing sphere, described by spherical coordinates (φ,θ), to points in the
image, described by polar coordinates (φuv ,r). Figure 8 illustrates the relation between
spherical coordinates and the intersection point from the incident ray.
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Figure 7: The traditional pinhole projection model (a) is unable to describe cameras with very high field
of view, as the image coordinate blows up to infinity when the incident angle, θ, tends to 90 degrees.
On the other hand, the equidistant projection model (b) is able to describe cameras with a field of view
of 180 degrees and beyond. This is done by considering the intersection point with a viewing sphere,
rather than a viewing plane.

φ θ

y

x

-z

P

Figure 8: In a generalized camera projection, a point P is projected onto the lens by casting a ray to-
ward the camera origin, intersecting the unit sphere along the path. The intersection point can be
described by the incident angle between the ray and the optical axis, θ, and the angle in the xy plane, φ.
A projection model maps the unit sphere coordinates θ, φ to a set of polar coordinates on the lens.
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When expressed as a mapping from spherical coordinates on the viewing sphere to po-
lar coordinates on the image plane, it is easy to extend the projection to accept arbitrary
incident angles. The simplest model of which is the linear relation:

r = f θ (9)

for some constant f , which maps the incident angle linearly to the lens. This model, called
the equidistant or equiangular mapping, avoids singularities at ±90 degrees, and can even
map the entire sphere of incoming light onto a �nite lens. In practice though, the large
compression near the edges makes it di�cult to extract any meaningful information from
large angles, for this particular model. Some alternative �sheye models are [8, p. 271]:

r = 2k tan(θ/2) — Stereographic projection
r = 2k sin(θ/2) — Equisolid projection
r = k sin(θ) — Orthogonal projection

where the main di�erences lie in how the compression grows by the incident angle. Moti-
vated by the fact that real lenses do not follow the projection model exactly, Kannala and
Brandt [23] proposed a polynomial model extending Eq. (9) with higher order terms:

r (θ) = k1θ + k2θ3 + k3θ5 + k4θ7 + ... (10)

The authors found the �rst �ve terms to give enough degrees of freedom to approximate
di�erent projection curves. Since real lenses may also deviate from precise radial symme-
try, they supplement their model with asymmetric terms, not shown in Eq. (10).

Although they obtain sub-pixel accuracy with this generic model, forward and inverse pro-
jection can be computationally demanding, depending on how many terms are used in the
mapping and the asymmetric distortion. It is, however, possible to precompute distortion
terms and store them in a look-up table, reducing computation at the cost of memory. In
particular, one could use a look-up table that stores the ray direction (θ,φ) corresponding
to a pixel (u,v), for inverse projection, and vice versa for forward projection.

We found the equidistant camera model, using only a single term as in Eq. (9), to be satis-
factory for our purpose. By ignoring asymmetric distortion e�ects we simplify both cali-
bration and runtime computation. Nevertheless, our solution is applicable for any camera
model. Hence, we denote the general projection of a point pc = (x, y, z)T , decomposed
in the camera frame {C}, to a point s = (u,v)T in the image by the projection function
π : R3 → R2. In the case of the equidistant model:

s = π(pc ) :=


u0 + r x/l
v0 − ry/l


(11)

where f ,u0,v0 are the equidistant lens model parameters, and

r = f atan
(

l
−z

)
(12)

l =
√

x2 + y2 (13)

The principal point (u0,v0) and the focal length f are found through camera calibration,
whose procedure is described in Section 3.3.
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3.2.2 Pose representation

Our choice of pose representation is motivated by its applicability for parameter estimation
in the Lucas-Kanade framework. Like many others [14, 49, 17, 16, 7, 43, 34], we use the Lie
algebra strategy where absolute poses are stored as homogeneous transformation matrices,
but parameter estimation is done in the unconstrained tangent space around the absolute
pose [5, Chapter 10.2].

We follow the notation in [15] and denote the rigid-body transformation from the object
coordinate frame {o} to the camera coordinate frame {c} by the 4 × 4 matrix Hc

o ∈ SE(3)

Hc
o =



Rc
o Tc

o

0 1


with Rc

o ∈ SO(3) and Tc
o ∈ R3

For convenience, we denote the transformation of points in the object frame, po , to the
camera frame by the composition operator

Hc
o ◦ po = pc = Rc

opo + Tc
o

During parameter estimation, we will solve for small updates to the pose, represented as
elements of the Lie algebra, that we write as vectors

ξ = (ω,v) ∈ R6

It can be shown that a rotating and translating coordinate frame is related to these vectors
by the di�erential equation

Ḣc
o (t) = ξ×Hc

o (t) (14)

where

ξ× :=


ω× v

01×3 0


and

ω× :=


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


This implies that

ω× = Ṙc
o (Rc

o )T (15)
v = Ṫc

o − ω
×Tc

o (16)

where ω = ωc
o/c

and Ṫc
o are the angular and linear velocity of the object, respectively. The

usefulness of this representation is that, if ξ is constant during the integration interval,
Eq. (14) can be exactly discretized with the matrix exponential [5, Chapter 10.2]

Hc
o (t) = exp(ξ×t)Hc

o (0) (17)

whose closed-form expression can be found in [5, Chapter 9.4]. In other words, pose esti-
mation can be done by iteratively solving for vectors ξ , without the need to impose con-
straints in the optimization, and updating the absolute pose by the matrix exponential,
without the need to avoid singularities.
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3.3 Calibrating the camera model

Camera manufacturers seldom list a number of important details about their products that
are required if one wants to use them for computer vision. Of interest to us are the camera
model parameters Eq. (11), known as intrinsic parameters [8]. The process of obtaining
values for these is known as calibration.

As described in Section 3.2.1, the equidistant model has three parameters: The optical
center coordinates (u0,v0) and the focal length f . In this section, our goal is to determine
these parameters such that, when substituted into Eq. (11), the synthesized image of an
exact 3D model looks (geometrically) identical to the image of its real-life counterpart. In
addition to a way of roughly estimating these parameters by hand, we will also describe an
automatic calibration procedure that determines the optimal parameters by minimizing the
sum of distance between point correspondences.

It is important to note that our goal in calibrating the camera is not to create high-quality
recti�ed images. Instead, our goal is to strike a balance between the accuracy of synthe-
sized images and the computational cost of forward- and inverse projection, which limits
the complexity of the camera model. As noted by Kannala and Brandt [23], a method that
satis�es these goal might be very di�erent from one that aims to produce high-quality
recti�ed images.

Before we proceed, we note that there are freely available calibration tools. OpenCV is a gen-
eral library for computer vision, and has functions for calibrating �sheye lenses from point
correspondences between an image and a calibration object (like a checkerboard). Their
model appears to be a polynomial model, similiar to that of Eq. (10), however — going by
their source code on Github and online documentation — it appears that their forward pro-
jection �rst computes the pinhole projection, and then distorts points by the polynomial.
This is problematic for wide-angle lenses, because the pinhole projection is numerically
unstable for incident angles at or close to 90 degrees (division by zero). Moreover, the in-
stallation of OpenCV is cumbersome, and we would rather not force anyone to go through
such an ordeal for the sake of calibrating a single camera. Alternatively, there are some
MATLAB toolboxes for calibrating lenses, but MATLAB is not free, and it is unreasonable to
expect others to have it installed. For these reasons we decided to roll our own tool.

3.3.1 Rough calibration by hand

The principal point often lies around the center of the image, i.e. if the captured image has
a resolution of W × H pixels, then the projection center can be approximated by (W2 ,

H
2 ).

On some cameras, the lens perimeter is clearly visible in the captured images. If the dis-
tance from the principal point to a point on the perimeter is known, and the �eld of view
of the camera — commonly found in most datasheets — is available, we can solve r = f θ
for the focal length f , since the other terms are known. That is:

f =
Distance to perimeter from center

Field of view/2
For example, if the �eld of view is 180 degrees, and the distance to the perimeter was mea-
sured to be 600 pixels, the focal length in pixel units is 600

π/2 .
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3.3.2 Automatic calibration

To automatically calibrate the camera parameters we take photographs from di�erent
viewpoints of a calibration object with easily discernable points, like the checkerboard in
Figure 9. The checkerboard contains squares of known dimensions, whose intersection
points in the images are easily located by hand, or automatically using a corner detector
[47]. Since checkerboard squares have known dimensions, we can compare these points
with predicted points projected from the object frame under the estimated camera pose (ex-
trinsic parameters) and the camera projection (intrinsic parameters). We will jointly solve
for the optimal extrinsic and intrinsic parameters, by minimizing the distance between the
predicted points and the observed points using unconstrained Gauss-Newton optimization.

Let Hk be the pose of the calibration object relative to the camera for the k’th image
and let pi,k be the point on the object corresponding to pixel si,k , in the k’th image. Let
x = ( f , u0, v0, ξ1, ξ2 ... ξM ) be the concatenation of optimization variables, containing
intrinsic parameters, that are �xed for all the images, and extrinsic parameters, that vary
across the M images. The extrinsic variables are represented as twists ξk ∈ R6, as de-
scribed in Section 3.2.2. Our goal is to iteratively minimize the sum of squared distances
between point correspondences taken across all images, described by the cost function

E(x) =
1
2

M∑
k=1

Nk∑
i=1

(
π(Hk ◦ pi,k ; f ,u0,v0) − si,k

)2 (18)

Minimization is done using standard Gauss-Newton optimization [37]. We linearize the
residuals, which lets us treat the problem as a linear least squares problem that can be
solved iteratively. Let us �rst consider the single-image case M = 1, and look at a single
error term (indices have been omitted for clarity):

e = π(H ◦ p; f ,u0,v0) − s

We want to know how the error changes if we modify any of the parameters. This is done
by taking the partial derivative with respect to each optimization variable. Letting H ◦ p =
(x, y, z), and using the equidistant projection Eq. (11), we get:

e =


u0 + f θx/l
v0 − f θy/l


− s

Since s is constant, the derivatives wrt. to the intrinsic parameters are:

∂e
∂ f
=



θx/l
−θy/l


=



û − u0
v̂ − v0


∂e
∂u0
=



1
0


∂e
∂v0
=



0
1


The relationship between a small camera motion and the resulting motion of a projected
point in the image can be shown to be linear wrt. the twist vector (see Appendix A.1). The
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derivative of the error wrt. to the extrinsic parameters is therefore:

∂e
∂ξ
= J (H ◦ p, f ,u0,v0)

where J is the interaction matrix (derived in Appendix A.1). Putting these together we get
the combined 2 × 9 Jacobian:

∂e
∂x
=

[
∂e
∂ f

∂e
∂u0

∂e
∂v0

∂e
∂ξ

]

In general, for M > 1, we will have M di�erent poses, and the combined Jacobian for the
i’th error in the k’th image will be a 2 × (3 + 6M) matrix of the form:

Ji,k :=
∂ei,k
∂x

=
[
∂ei,k
∂ f

∂ei,k
∂u0

∂ei,k
∂v0

0 ... 0 ∂ei,k
∂ξk

0 ...0
]

In the Gauss-Newton method, the cost function Eq. (18) is iteratively minimized by solving
a quadratic approximation at each iteration, based on the current parameter estimates

E(x + δ) =
1
2
∑

(ei,k + Ji,kδ)T (ei,k + Ji,kδ)

=
1
2
∑

eTi,k ei,k +
∑ (

eTi,k Ji,k
)
δ +

1
2δ

T
(∑

JTi,k Ji,k
)
δ

The optimal parameter update δ is found by di�erentiating and equating the above to zero

δ∗ = −
(∑

JTi,k Ji,k
)−1 (∑

eTi,k Ji,k
)

(19)

and the optimization variables are updated by addition, for the intrinsic parameters, and
the exponential matrix Eq. (17), for the extrinsic paramters.

In our implementation, we �nd that we need a good initialization to ensure that the Gauss-
Newton algorithm converges to the correct solution. The rough calibration described in
the previous section is su�cient to initialize the intrinsic parameters. Among the extrinsic
parameters, the distance along the optical axis is most critical, and should at the very least
be initialized to a negative number, since the checkerboard is in front of the camera. The
remaining pose variables are initialized manually through measurements or via a graphical
user interface.

To lessen the need for good initialization, we use a hierarchical optimization method so
that early iterations have e�ectively fewer degrees of freedom, focusing on the least certain
parameters, and gradually increasing the degrees of freedom as the error goes down. This
is done by adding a regularizer to the Hessian in Eq. (19):

δ∗ = −
(∑

JTi,k Ji,k + R
)−1 (∑

eTi,k Ji,k
)

(20)

where, for example, R = diag(σ1,σ2, ...,σ3+6M ). Initially, the weights for the intrinsic
parameters are set large, while the weights for the uncertain extrinsic parameters are set to
zero. As the error decreases, or going by the iteration count, the weights are decreased for
all parameters, gradually allowing all the degrees of freedom to be taken into account.

Once the calibration has converged, the quality of the result can be veri�ed either by the
total resulting error Eq. (18), and visualized by projecting the checkerboard points back
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into each image, and manually inspecting the errors. The extrinsic parameters can be use-
ful to determine how the camera is mounted on a platform. For example, if the camera is
mounted on a drone, it is useful to know how the camera is rotated or translated with re-
spect to the drone’s body frame. In particular, if the drone estimates its orientation using
an IMU, the orientation of the camera will be the composition of Hb

c , the camera-in-body
transformation, and Hw

b
, the body-in-world transformation. Hb

c can be found by manu-
ally aligning the body frame with the checkerboard (the object frame), and estimating the
extrinsic parameters for the camera:

Hb
c = (Hc

o )−1

Figure 9: Automatic calibration of an equidistant camera model. A 6 × 8 grid of points on a printed
checkerboard are compared with the projected points from a world-scale model of the checkerboard.
The optimal calibration parameters are computed by minimizing the sum of squared distances between
observed points (tile intersections) and the points predicted by the camera model (round dots).
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3.4 Detection by direct image alignment

This section describes our implementation of the Lucas-Kanade algorithm to estimate the
3D orientation and position of planar objects with a known texture. Our implementation
performs the following steps for each input frame:

1. (O�ine) Model image is processed into an image pyramid.

2. Input image is read and processed into an image pyramid.

3. Poses are initialized from previous frames or from the color detector.

4. Poses are iteratively updated by hierarchical Gauss-Newton minimization, with
regularization in each pyramid level to improve stability and convergence.

We implemented several cost functions based on M-estimators and dense descriptors.
These are described in Section 3.4.1 and use the warp function that is described in Sec-
tion 3.4.2. In Section 3.4.3 we describe how we iteratively update pose estimates by Gauss-
Newton optimization on the forward compositional formulation. Finally, Section 3.4.4 de-
tails our implementation of rotation invariant Descriptor Fields, which we felt was valuable
to include since we could not �nd any description in the literature.

3.4.1 Objective function

We implemented four objective functions that combine a robust weighting function Eq. (7)
with a dense descriptor Eq. (8) under the Euclidean distance, each described by the general
iterative reweighted least squares objective

E(H) =
∑
i

wi | |ri | |22 (21)

where
ri = φI (W (ti ; θ))) − φM (ti ) (22)

We compare two choices for the weight function wi

wi = 1 Quadratic (L2)

wi =



1 if | |ri | | ≤ k
k
| |ri | |

otherwise Huber (Hu)

and two choices for the feature descriptor

φI = I Intensity (In)
φI = (I+u ,I

−
u ,I

+
v ,I

−
v ) Descriptor �eld (Df)

where the descriptor �eld is made rotation invariant, using the procedure described in
Section 3.4.4.
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3.4.2 Warp function

The warp function transforms surface points on the model to camera coordinates and
projects the point into the image using the equidistant camera projection. In particular,
we let Hc

o ∈ SE(3) be the model coordinate frame decomposed in the camera coordinate
frame, and ti ∈ R2 be the texture coordinate in the model with an associated intensity
M (ti ) ∈ R. The texture coordinates are mapped to 3D points poi = poi (ti ) ∈ R3 by a linear
surface parametrization, rotated and translated into the camera frame, and projected into
the image by. Therefore, the warp function is

W (ti ; Hc
o ) = π(Hc

o ◦ poi ) (23)

and the cost function Eq. (21) becomes

E(Hc
o ) =

∑
ti ∈DM

wi
����φI (π(Hc

o ◦ poi )) − φM (ti )����22 (24)

3.4.3 Gauss-Newton minimization

We minimize Eq. (24) by iteratively minimizing

E(ξ) =
∑

ti ∈DM

wi
����φI (π(exp(ξ)Ĥc

o ◦ poi )) − φM (ti )����22

for small updates ξ ∈ R6 that are composed with the absolute pose estimate

Ĥc
o ← exp(ξ)Ĥc

o

This is done by linearizing the residuals with respect to ξ and solving the resulting linear
least squares problem. Let si = π(Hc

o ◦ poi ) be the i’th surface point projected into the
image, and let s′i = π(exp(ξ)Hc

o ◦ poi ) be the same point after a small pose change. We
show in the Appendix these are related by

s′i = si + Jiξ

where Ji is the warp Jacobian evaluated at Hc
o ◦ poi , whose derivation is given in Appendix

A.1. The �rst order Taylor expansion of the image descriptor is therefore

φI (s′i ) ≈ φI (si ) + ∇φI Jiξ (25)

leading to the quadratic cost approximation

E(ξ) =
∑
i

����φI (si ) + ∇φI (si )Jiξ − φM (ti )����22 (26)

and the optimal parameter update

ξ̂ = −

(∑
i

JTi ∇φ
T
I
∇φI Ji

)−1 ∑
i

∇φI Ji (27)
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For the intensity descriptor φI = I the descriptor gradient is the image gradient estimated
by central di�erences

∇φI = ∇I =
[
I(u+1,v)−I(u−1,v)

2
I(u,v+1)−I(u,v−1)

2

]
(28)

whereas the descriptor �eld gradient is slightly more involved, since it is a vector descriptor
of four components, or equivalently a four channel image, which means that the gradient
becomes a 4 × 2 matrix, unlike the image gradient which is a 1 × 2 matrix. Moreover, the
steps needed to make the descriptor rotation invariant means that the gradient cannot be
directly computed by �nite di�erences. We deal with this in the next section.

3.4.4 Rotation invariant descriptor �elds

Aside from sum of squared intensities, we also implement a robust dense feature descriptor.
We base our implementation on the Gradient Based Descriptor Field (GBDF) of Crivellaro
et al. [10]. Motivated by the criticism of Ngo [35] and Alismai [1], who noticed that GBDF
is not rotation invariant, we extend the descriptor to be so. Since Ngo [35] did not provide
any details of their implementation, and Alismai did not attempt to �x it, we will need to
derive this on our own.

The descriptor �eld φI (s) of an image I at pixel s = (u,v) is de�ned in [10] as the vector

φI (s) = (I+u ,I
−
u ,I

+
v ,I

−
v )

where subscript denotes the derivative with respect the image coordinate and superscript
+, − denotes the operator

x+ =



x if x > 0
0 otherwise

and x− =



−x if x < 0
0 otherwise

which preserves the positive and negative components. We call this the unsigned gradient
�eld. The signed gradient �eld can be reconstructed from the unsigned components by

Iu = I
+
u − I

−
u and Iv = I

+
v − I

−
v (29)

The residual Eq. (22) is the L2 norm of the vector di�erence

| |ri | |22 = | |φI (si ) − φM (ti ) | |22 (30)

Following the suggestion in [10], we smooth the descriptors by a Gaussian kernel. We
found that smoothing the signed gradient �eld, and then extracting the unsigned compo-
nents, removed valuable information due to cancellation. Therefore, we extract the un-
signed components from the signed �eld, and then smooth these individually.

The problem occurs when the model is rotated relative to the image, and the texture con-
taining the descriptor values is sampled without taking this into account. To illustrate,
consider the situation shown in Figure 10, where the model and the input are both identical
3×3 images, but rotated ninety degrees relative to each other. The descriptor �eld for both
images is computed from the gradients, whose directions are indicated by the black arrows.
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(a) Input (b)Model
Figure 10: The model and input images are identical 3×3 images, but one is rotated ninety degrees. The
gradients are indicated by the black arrows.

Consider now what happens when the model is rotated into the vertical orientation of the
input, as shown in Figure 11a. For the intensity di�erence metric, one would simply com-
pare each intensity value in the model texture with the intensity sampled from the input
image at the warped pixel. Descriptor �elds can be thought of as an extension of grayscale
images where the model and input are now four-channel images. A naive implementation
would therefore do as before, and compare the vector in the model texture with the bilin-
early sampled vector in the input. However, since the texture values are constructed from
image gradients they are directional, and they too must be rotated along with the warp!

(0,0,1,0)

(a)Model being rotated

(0,0,1,0)

(0,1,0,0)

(b) Comparison
Figure 11: The model descriptors are unmodified during rotation and erroneously compared with those
of the input.

The consequence of omitting this step is shown in Figure 11a, where the descriptor vectors
in the model texture are unmodi�ed during the rotation. Consider the gradient pointing up
in the model, emphasized in Figure 11a, whereMu = 0 andMv = 1, giving the descriptor
vector φM = (M+u ,M

−
u ,M

+
v ,M

−
v ) = (0,0,1,0). Once rotated, this vector is compared with

the upper-right pixel in the input emphasized in Figure 11b. The input pixel has a gradient
pointing left, that is Iu = −1 and Iv = 0, hence φI = (I+u ,I

−
u ,I

+
v ,I

−
v ) = (0,1,0,0). Since

the two are not component-wise identical, the residual Eq. (30) is erroneously non-zero:

| |ri | |22 = | |φI − φM | |
2
2 = | |0,1,−1,0| |22 = 2

even though the textures are correctly aligned.
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tx

ty

u

v

I

tx

ty

I

Figure 12: The input gradient ∇I is computed by finite differences in the input coordinate frame, there-
fore, its coordinates are decomposed by the u, v basis vectors. Since these basis vectors are different
than those of the warped model texture, tx and ty , gradients in the input and gradients in the warpedmodel are computed in different frames and can therefore not be directly compared. Shown on the
left is an input gradient, obtained from finite differences, plotted as a vector. This gradient must be
transformed to the model texture space, shown on the right, before comparing it with model gradients.

The problem gets slightly more hairy when the model undergoes a nonlinear warp, as
opposed to a simple rotation. Our solution is to notice that we can transform gradients
from either coordinate frame into the other, and applying the chain rule to express the
input image gradients with respect to the model texture coordinates. That is,

∂I

∂tx
=
∂I

∂u
∂u
∂tx
+
∂I

∂v

∂v

∂tx
(31)

∂I

∂ty
=
∂I

∂u
∂u
∂ty
+
∂I

∂v

∂v

∂ty
(32)

written compactly as
[
∂I
∂tx

∂I
∂ty

]
= ∇I

∂s
∂t

where ∇I is computed as in Eq. (28). The right-hand term describes how model texture
coordinates are mapped to input texture coordinates. For the warp in Eq. (23) we have

∂s
∂t
=

∂π

∂pc
∂pc

∂po
∂po

∂t

where
∂π

∂pc
= J (pc )

∂pc

∂po
=

∂

∂po
(Rc

opo + Tc
o ) = Rc

o

∂po

∂t
: is obtained from the surface parametrization.

Note that Figure 12 can be a little misleading, since the columns of ∂s
∂t do not, in general,

form an orthogonal basis. Now, the unsigned descriptor can be recomputed in the correct
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frame from ∂I/∂tx and ∂I/∂ty , the result we denote by ( f1, f2, f3, f4), where

f1 =
[
∂I

∂tx

]+
f2 =

[
∂I

∂tx

]−
f3 =

[
∂I

∂ty

]+
f4 =

[
∂I

∂ty

]−

We now need to compute the gradient of the descriptor vector that forms the linearized
residual Eq. (25). That is, we need to compute the input-space gradient of the unsigned
gradient components transformed to model-space:

∇ f1 =
∂ f1
∂s

∇ f2 =
∂ f2
∂s

∇ f3 =
∂ f3
∂s

∇ f4 =
∂ f4
∂s

One option, that we see, is to rasterize f1..4 to seperate textures, and then compute their
input-space gradients by �nite di�erences. However, these textures must be rasterized in
each iteration and for each target being re�ned, since the transformation depends on the
pose parameters. That seemed expensive, so we chose to do the following. Consider the
�rst component of the descriptor, f1. Its gradient is

∂ f1
∂s
=

∂

∂s

[
∂I

∂tx

]+
=




∂
∂s

∂I
∂tx

if ∂I
∂tx
≥ 0

0 otherwise

where

∂

∂s
∂I

∂tx
=

∂

∂s

(
∂I

∂u
∂u
∂tx
+
∂I

∂v

∂v

∂tx

)
Intuitively, this derivative is a�ected by two factors. One, as the projected input-space
point s moves, the input-to-model transformation will change, since the transformation is
nonlinear (in our equidistant projection). The second factor is the input-space gradient of
the input-space descriptor, which is computed in the preprocessing stage. In our case, the
transformation basis is relatively constant, so we approximate its derivative by zero. This
implies that

∂

∂s
∂I

∂tx
≈

(
∂

∂s
∂I

∂u

)
∂u
∂tx
+

(
∂

∂s
∂I

∂v

)
∂v

∂tx
(33)

and

∂

∂s
∂I

∂ty
≈

(
∂

∂s
∂I

∂u

)
∂u
∂ty
+

(
∂

∂s
∂I

∂v

)
∂v

∂ty
(34)

The desired gradients can now be readily computed as

∂ f1
∂s
=




∂
∂s

∂I
∂tx

if ∂I
∂tx
≥ 0

0 otherwise

∂ f2
∂s
=




− ∂
∂s

∂I
∂tx

if ∂I
∂tx
≤ 0

0 otherwise

∂ f3
∂s
=




∂
∂s

∂I
∂tx

if ∂I
∂ty
≥ 0

0 otherwise
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∂ f4
∂s
=




− ∂
∂s

∂I
∂tx

if ∂I
∂ty
≤ 0

0 otherwise

We saw the need to smooth the unsigned gradient �eld, instead of smoothing the signed
gradient �eld and extracting the unsigned components. This introduces some additional
hoops to jump through. When transforming the input descriptor to the model frame, we
�rst need to reconstruct the signed gradient using Eq. (29), rotate that by Eq. (31), and then
extract the unsigned components.

We also do this when computing the input-space gradient of the input-space gradient (the
terms inside the parentheses in Eq. (33) and Eq. (34)). That is

∂

∂s
∂I

∂u
=

∂

∂s
(
I+u − I

−
u

)
∂

∂s
∂I

∂v
=

∂

∂s
(
I+v − I

−
v

)
The terms on the right-hand side are available in textures, so the input-space derivative
can be obtained by �nite di�erences, and we get

∂

∂s
∂I

∂u
= ∇I+u − ∇I

−
u

∂

∂s
∂I

∂v
= ∇I+v − ∇I

−
v

3.4.5 Regularization in the camera frame

We use a hierarchical motion model similiar to [29], but we implement it by imposing
a prior [4] on the allowed motions, thus avoiding the complexity in switching between
models during runtime, and also allowing us to dynamically weight di�erent motions
based on their uncertainty.

Suppose we have information that tells us where we can expect model to be located. For
example, maybe we are fairly certain that the model is not rotated very much about the
x- or y-axis, nor translated very much along the z-axis. In that case, we would want to
disallow parameter updates that tries to move in those directions. This can be done by
adding a regularizer that penalizes the associated components of the twist vector. From
Eq. (15) the components of ξ = (ω,v) are related to the object motion by

ω = ωc
o/c

v = Ṫc
o − ω

×Tc
o

Note that a regularization matrix with diagonal weights, corresponding to weighting
ωx ,ωy and vz , would not penalize the correct motion, since v includes both linear velocity
and angular velocity. If we want to penalize translation in the camera frame we need to
extract the Ṫc

o components from v

Ṫc
o = v + ω

×Tc
o
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where Tc
o is obtained from the previous solution and assumed constant during one itera-

tion. Denoting η = (ωc
o/c

,Ṫc
o ) and using the identity a×b = −b×a we have

η =



I3×3 03×3
−(Tc

o )× I3×3


ξ = R1ξ

Using this relation we can construct a regularization matrix R that weights the individual
components of η

ηT R2η = ξ
T RT

1 R2R1︸   ︷︷   ︸
R

ξ

so that the regularized cost function Eq. (26) becomes

E(ξ) =
∑
i

����φI (si ) + ∇φI (si )Jiξ − φM (ti )����22 + ξT Rξ

and the optimal parameter update Eq. (27) becomes

ξ̂ = −

(∑
i

(
JTi ∇φ

T
I
∇φI Ji

)
+ R

)−1 ∑
i

∇φI Ji

3.4.6 Model acquisition

We acquired the model texture from a frame of recorded video where the target was mostly
planar and not corrupted by glare. Figure 13 shows the frame and the acquired model tex-
ture. This was done by manually aligning the geometric shape of the target to the image,
and sampling the image at the resulting surface points using the forward projection equa-
tion, thereby also rectifying lens distortion. The resulting image was edited in a painting
program to remove the specular highlights, the cable, and the background pattern, since
these are not permanent elements.

(a) Source (b)Model
Figure 13: The model texture (b) is captured and rectified from recorded video (a)
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3.5 Detection by color segmentation

Although the image alignment method can be initialized from previous frames, we still
need a way to generate poses for when targets �rst appear. One option we see is a sliding
window approach, where we �x the orientation and scale of the target, and translate it
around looking for good matches, at the coarsest level of detail (for e�ciency). This could
be useful for general objects, and it might not even be that slow (taking into account that
the method we are about to describe does also has a cost), but we did not investigate this
option in detail. Instead, we generate initial pose estimates by segmenting the colored top
plates of the targets, and compute their 3D position and orientation by inverse projection,
using the height and orientation of the camera, measured by on-board sensors.

Our approach �rst creates a binary segmentation, by comparing each pixel against a con-
stant threshold (one for red and one for green). Then, we cluster the binary pixels together
by computing the set of connected components. The main steps involved in this is illus-
trated in Figure 14. Finally, we recover the 3D position and orientation of the plates by
intersecting the ray toward their pixel centers against the world plane.

3.5.1 Connected components

First, in an attempt to be robust against global and local lighting e�ects, we transform
colors to the normalized rgb color space:

(r,g,b) =
(R,G,B)

R + G + B

We create the binary segmentation by iterating over each pixel, computing its normalized
rgb color, and comparing the relative magnitude of red against green and blue (to test
for red), and the relative magnitude of green against red and blue (to test for green). In
pseudocode the per-pixel comparison looks like this:

IsRed = r > RedGreen * g && r > RedBlue * b;

IsGreen = g > GreenRed * r && g > GreenBlue * b;

where r,g,b are the normalized rgb components of the given pixel, and RedGreen, RedBlue,
GreenRed and GreenBlue are constant thresholds indicating the required relative magni-
tude. If a pixel satis�es either comparison its binary pixel is set to 1, indicating active pixels
that are to be connected, otherwise it is left as 0.

We then compute the set of connected components in the binary image. For each active
pixel, that is not already part of a component, we grow a new connected component by a
breadth-�rst expansion on its active neighbors, with 8-neighborhood connectivity. Once
there are no more active neighbors, we continue with the next pixel not part of any compo-
nent.

3.5.2 Recovering the object pose

Mapping pixels back to their original world coordinates involves inverting the camera
projection. In general, we can only determine these coordinates up to an unknown scale,
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but if we assume that the pixels belong to an object located at a �xed height relative to the
ground, and we know the height and orientation of the camera, it is possible to recover
the original coordinates. This is done by intersecting the ray, originating at the camera
aperture and passing through the pixel on the viewing sphere, with the ground plane. Let
dc be the ray passing through a pixel (u,v), decomposed in the camera frame. Then, as
shown in Figure 8, the ray can be written in terms of the viewing sphere coordinates (φ,θ):

dc =



sin θ cos φ
sin θ sin φ
− cos θ


(35)

For the equidistant model in particular, the spherical coordinates are:

cos φ = u − u0
r

(36)

sin φ = v0 − v

r
(37)

θ =
r
f

(38)

where r =
√

(u − u0)2 + (v0 − v)2.

We compute the center of each component by taking the mean of the pixel coordinates of
its members. Then, using the height and orientation of the camera, we compute the ray
passing through the center and �nd its intersection with the target’s top plate. In particu-
lar, let h and ht be the height of the camera and the plate above the ground, respectively,
and let Rg

c = Ry (ecy )Rx (ecx ) be the orientation of the camera {c} relative to the ground
plane {g}, expressed in Euler angles. Then dg = Rg

c dc is the ray expressed in ground plane
coordinates and its intersection point with the target’s top plate is

pg = pg
0 + tdg = (x, y,ht )

where pg
0 = (0,0,h) is the position of the camera. After solving for t we �nd that

pg = (0,0,h) +
ht − h

dg
z

dg

Since we need the object position relative to the camera, we rotate its relative vector to the
camera frame and get the simpli�ed expression

Tc
o = Rc

g (pg − pg
0 ) = Rc

g (tdg ) = tdc =
ht − h

dg
z

dc (39)

Since the object is (presumably) �at with the �oor, its orientation, aside from its heading,
relative to the camera is the inverse of that of the camera relative to the �oor. We can
therefore express its orientation as

Rc
o = Rx (eox )Ry (eoy )Rz (eoz ) = (Rg

c )T Rz (eoz ) (40)

where eoz is its heading angle (relative to the camera). The camera orientation is obtained
from a state estimation �lter in the on-board �ight controller, and the height is obtained
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by combining this orientation with the raw LIDAR range. We only measure the pitch and
roll angles of the camera, ecx and ecy , and not the yaw angle, but that does not a�ect dg

z and
therefore does not a�ect Tc

o either.

We merge neighboring components if the distance between their projected ground plane
coordinates is less than the diameter of the target robot. This reduces super�uous detec-
tions. We also compute the aspect ratio of each connected component and require that it be
su�ciently square, thereby ignoring components that are thin and long in one direction (in
particular, the red and green arena edges). We also compute the �lled area of each compo-
nent, by dividing the number of pixels in it with the area of its bounding box, and require
it to be above a threshold. This avoids thin structures that still have a square aspect ratio,
such as line crossings. We also ignore components that have very few pixels.

(a) Input image (b) Normalized colors

(c) Binary segmentation (d) Connected components
Figure 14: The input image is downscaled four times (a), and segmented into a binary image (c) by
a uniform threshold on normalized rgb colors (b). Finally, the active pixels in the binary image are
grouped into connected components (d).
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4 Evaluation

This chapter evaluates how our solution fares on real life data. For the image alignment
detector we look at its ability to report whether a detection is true or false, as this is an
important attribute in practice, and study how much error there can be in the initial pose
estimate. For the color segmentation detector we look at its ability to segment the top
plates across di�erent lighting conditions with the same runtime parameters.

4.1 Datasets

Figure 15a shows selected frames from videos recorded at the competition venue, our full
scale tests in a gym and our small scale tests in our lab. We use the videos and selected
frames to evaluate the image alignment and the color detector.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15: Selected frames from recorded video containing scale variations, multiple structures (when
the target is on top of the white grid lines), specular highlights, shadows (when the quadrotor is close),
model variation (some of them are missing the switch on their plate), non-rigid parts (the string flapping
in the breeze) and motion blur.

51



4.2 Detection by image alignment

We evaluate the following aspects of our image alignment implementation:

• The necessary sampling interval for yaw initialization

• The ability to report incorrect alignments and false positives

• The maximum error tolerated in the initial estimate

and compare the four cost functions described in Section 3.4.1 on these aspects.

4.2.1 Basin of convergence

The color detector gives a coarse estimate of the position Tc
o and orientation Rc

o of the
target, excluding its heading, by combining the estimated pixel center with the orientation
and height of the camera, obtained from IMU and LIDAR measurements. The noise in these
sensors, and the inaccuracy of the color segmentation, contribute to noise in the coarse
position and orientation. How much noise can there be before the image alignment fails
to converge to the correct pose, or, how wide is the basin of convergence? We study this by
sampling a distribution of poses centered around the true pose and, at increasing levels of
noise, counting the number of times the algorithm converges to the correct solution.

First, we ballpark the noise in the camera orientation and height based on data logs from
recorded �ights. The target pitch and roll, ex and ey , are directly obtained from those of
the camera by Eq. (40), and therefore have the same noise. The target translation Tc

o is
obtained from the LIDAR range, the camera orientation, and the pixel center, by Eq. (39).
Since the camera is always mostly pointing straight down, the noise in Tz is approximately
the same magnitude as the LIDAR range noise, whereas Tx and Ty mostly depend on the
estimated pixel center, which we reckon will be anywhere within the top plate.

Based on the above, we obtained our noise baseline. We run the experiment on eight scales
of the baseline, given in Table 2. For each scale, σi , delta parameters are uniformly sampled
from their corresponding range, and added to the true parameters to generate the initial
pose estimate. The target heading is not measured by any sensor, and we set its range to a
constant ±40 degrees, that we justify experimentally in Section 4.2.2.

σ Scale ex (degrees) ey (degrees) Tx (meters) Ty (meters) Tz (meters)
σ1 0.25 1.25 1.25 0.04 0.04 0.05
σ2 0.50 2.50 2.50 0.08 0.08 0.10
σ3 0.75 3.75 3.75 0.11 0.11 0.15
σ4 1.00 5.00 5.00 0.15 0.15 0.20
σ5 1.25 6.25 6.25 0.19 0.19 0.25
σ6 1.50 7.50 7.50 0.22 0.22 0.30
σ7 1.75 8.75 8.75 0.26 0.26 0.35
σ8 2.00 10.0 10.0 0.30 0.30 0.40

Table 2: Scales of the coarse pose estimate noise baseline
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We manually calibrate each image for the correct pose and count the number of times the
alignment converges to the correct pose. We run 10 iterations at the coarsest level, 10 at
the medium level and 10 at the most detailed level, and sample 20 poses per scale.

We say that the alignment converged to the correct pose if the Euler angles ex ,ey ,ez and
translation components Tx ,Ty ,Tz of the estimated pose H are su�ciently close to those of
the true pose H∗. We de�ne su�ciently close by the distance metric

d(H,H∗) =
1
6 (|δex | + |δey | + |δez | + |δTx | + |δTy | + |δTz |) (41)

where the deltas are weighted such that they are ±1 at an appropriately far away point

δex =
ex � e∗x
0.7 δey =

ey � e∗y
0.7 δez =

ez � e∗z
1.14

δTx =
Tx − T∗x
0.7 δTy =

Ty − T∗y
0.7 δTz =

Tz − T∗z
0.4

and a � b represents the smallest angular di�erence between a and b. The criterion for
correct convergence was determined by dragging slider bars around and seeing how bad
the pose looked for a given distance. We set the criterion to d(H,H∗) ≤ 0.1.

Figure 16 shows our results for the images shown in Figure 15 in row order (a) through (i).
The descriptor �eld objective appears to have a smaller basin of convergence and overall
lower likelihood of converging correctly in all images. In either case, there appears to be no
clear advantage of using Huber weighting over L2.

In Figure 15e and Figure 15f, all objectives erroneously pitch forward in order to align the
plate, but cause a large pose error in doing so, since the target is far from planar at that
viewpoint. In (e) this is because the target is very close, while in (f) the target is far away
but very o�-center. Since the top plate extends some centimeters above the body, the target
only appears su�ciently planar when su�ciently centered and far away. We think a 3D
model would mitigate this issue.

In Figure 15g, all objectives were unstable and blew up at the lowest level of the image
pyramid. This was because the target appeared too small, and lost too much detail at the
coarsest level. The descriptor �eld objectives demonstrated greater signs of instability, such
as oscillation, than the intensity objectives, due to the descriptor being more sparse. We
found that instabilities could be mitigated by reducing the amount of smoothing of the
input image and skipping the coarsest pyramid levels, but doing so causes the alignment
to converge very slowly, or not at all, in close-ups such as Figure 15e. This hints at the
necessity of a dynamic level of detail scheme, where the level of detail is selected based on
the size of image region being aligned against.

In Figure 15h all objectives failed to align correctly due to the misleading background pat-
tern and the specular highlight, which caused the objectives to erroneously tilt the pose to
align the top plate against the non-specular portion. The descriptor �eld objective failed to
reject this error because it is mostly zero in smooth areas, and non-zero in contrasting ar-
eas. In this case, the glare and the background removed a su�ciently large area containing
contrast (between the body and the background, and the plate and the body) to cause it to
align incorrectly.
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Figure 16: Convergence rate (y-axis) for the four cost functions on each of the 9 images, for increasing
scalar multiples of the noise baseline (x-axis). The rate is computed as the number of correct estimates
divided by the total number of samples for that scale. Blank graphs indicate that the algorithm failed to
converge to the correct pose regardless of initialization.
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4.2.2 Minimum sampling for yaw initialization

The color segmentation does not measure the yaw angle of the target, and the convergence
basin does not cover all 360 degrees of possible angles. Therefore, we try multiple initial
yaw angles and choose the one that converged with the lowest error, but how many angles
do we need to try? We study this question by discretizing the range of yaw angles and, for
each angle, estimating the likelihood that the alignment converges to the correct pose.

To illustrate, suppose we want to be atleast 60 percent certain that we obtain the true pose
from a detection in a single frame. Then we hope to see that (a) the convergence likeli-
hood at the correct yaw angle is above 60 percent and (b) that there exists an angle further
away that is also above 60 percent. We could then choose the yaw sampling resolution
based on the di�erence between these angles.

Figure 17 shows our results for a single test image, where the target is slightly corrupted
by glare, at a height of 1 meter where the planarity assumption holds well. We restricted
our sampling to 180 degrees, since the convergence rate was depressingly low beyond
90 degrees o�set from the true yaw. From the �gure, we see that the Huber weighting
decreases the basin of convergence for both descriptors, and also that the intensity metric
has a wider basin than descriptor �elds. It appears that sampling 40 degrees at a time is
su�cient to sample atleast one angle within ±40 degrees, for which the convergence rate is
above 60 percent for all cost functions.

Note that we have 60 frames per second of video, and that once the correct yaw angle has
been found, the target can be tracked without the need for reinitialization by reusing the
previous frame’s pose. This means that we do not need 100 percent certainty of obtaining
the correct yaw angle from a single frame, but can instead amortize the cost over several
frames, if the delay is acceptable. For example, if the sampling guarantees a 60 percent like-
lihood per frame of correctly locating the target, and each frame is independently sampled,
then �ve frames is su�cient to be 98 percent certain.
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Figure 17: Convergence rate for fixed yaw angles and the remaining parameters sampled from the
baseline range in Table 2. The x-axis is the initial yaw in degrees offset from the true yaw, and the y-axis
is the number of samples that converged to the correct solution divided by the total number of samples.
We used 100 samples per angle.
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4.2.3 Detecting alignment failure

A critical aspect of the algorithm is its ability to indicate whether a detection is true or
false. We investigate whether the value of the cost function, the alignment error, is an
appropriate discriminator for distinguishing false detections from true detections. In par-
ticular, we would like to answer the following: Let H∗ be the true pose, that may not exist
if there is no robot present, and let H be a pose estimate with the corresponding alignment
error E(H) after some iterations. Does there exist a threshold E0, such that

E(H) < E0 ⇒ H∗ exists and H is su�ciently close to H∗

E(H) ≥ E0 ⇒ H∗ does not exist or H is far away from H∗

In other words, can we compare the alignment error with a constant threshold to deter-
mine whether or not there is a robot present and, if there is, that the estimated pose is suf-
�ciently close to the true pose? The existance of such a threshold requires that the global
minimum of the cost function actually corresponds to the true pose, and that its value at
this minimum is su�ciently distinct from incorrect, local minima.

We study this by inspecting the landscape of the cost function in terms of the above prop-
erties. Since we have six variables, we �atten the cost function to one dimension, where
the y-axis is the alignment error, and the x-axis is the distance from the true parameters,
computed by Eq. (41). We randomly sample initial pose parameters from ranges centered
at the true pose parameters, and iterate until the estimates converge or reach the maximum
number of iterations4. The sampling ranges are similiar to those of the noise baselines in
Table 2, except the heading is sampled from 360 degrees. We study four images, shown
in Figure 18. Figure 18a is almost ideal, with very little glare, Figure 18b breaks the pla-
narity assumption, Figure 18c has strong glare and misleading background patterns, and
Figure 18d contains nothing of interest. We obtain ground truth poses for each image by
manual calibration.

(a) Almost ideal (b) Close-up (c) Lines in background (d) False detection
Figure 18: Test cases for evaluating alignment failure detection.

Figure 19 show our results for Figure 18a. The scatter plot shows the distribution of pose
estimates after optimization, plotted at their alignment error against their distance to the
true parameters, while the histogram shows the distribution of estimates for particular

4The e�ect of this is similiar to shaking a cereal box vigurously to force the good bits to bubble up, where, in
this case, the good bits are the local minima of a dense photometric similarity function.
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alignment errors. A gray line is drawn between minimum alignment errors across the
pose distance axis to indicate the worst-case cost function.

What we want to see is a large gap in alignment error between poses that converged to the
correct pose and those that didn’t. An example of this is seen in Figure 19a. We see that
many (read o� the histogram) estimates converged to a pose that is very close to the true
pose (since the pose error is small), and they all have an alignment error close to 0.1, while
the estimates that failed to converge correctly all have an error above 0.3. This indicates
that a threshold around 0.2 could distinguish true and false alignments for this particu-
lar image. Similiar behaviour is seen for the L2 weighted intensity objective Figure 19b,
that has a slightly wider gap, and the descriptor �eld objectives Figure 19c and Figure 19d,
although they both have a smaller gap than the intensity objectives.

Examples of the contrary is seen in Figure 20, where the target was very close to the cam-
era so that the planar texture model is no longer a good approximation. Compared with
Figure 19, all objective functions have larger alignment error for all pose estimates. More-
over, some almost identical pose estimates appear to have vastly di�erent alignment errors.
The intensity objective estimates converged to a slightly incorrect pose, while the descrip-
tor �eld objective estimates su�ered from very slow convergence and tended to stay where
they were initialized. We also see that the descriptor �eld objectives have the global mini-
mum far away from the true pose.

Figure 21 shows how the e�ect of noise on the global minimum location. All objectives
converged to a pose that was much farther away than the correct pose compared to that ob-
served in Figure 19 and Figure 20. This is caused by the glare and the background pattern
that removes useful contrast against the body. The intensity objectives have an error at
0.2, which is an increase from 0.1 in Figure 19a and Figure 19b, whereas the descriptor �eld
objectives have an error of 0.4, which is an increase from 0.3 in Figure 19c and Figure 19d.
The overall increase indicates that all objective functions are sensitive to the fact that the
alignment is slightly o�, in the sense that the error has increased compared to that in the
almost ideal case.

Figure 22 is meant to inspect the correlation (or lack thereof) between the model and an
image region not containing a target. Ideally, we do not want empty background regions
to appear as targets. We see that Huber weighted intensity has an alignment error around
0.4 across all poses, and the L2 weighting has a higher error at 0.6. The Huber weighted
descriptor �eld lies around 0.4, and the L2 weighted lies around 0.6. Since these values are
higher than that of the global minimum in Figure 19, this suggests that there does exist a
threshold that discriminates true and false detections. However, this threshold would likely
label the close-up case of Figure 20 and the contaminated case of Figure 21 as being false
detections.
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(a) Intensity + Huber
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(b) Intensity + L2
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(c) Descriptor Field + Huber
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(d) Descriptor Field + L2
Figure 19: Results for alignment error discrimination for Figure 18a.

58



 Pose error
0 0.5 1

 A
lig

n
m

en
t 

er
ro

r

0

0.2

0.4

0.6

0.8

1

 A
lig

n
m

en
t 

E
rr

o
r

0

0.2

0.4

0.6

0.8

1

 Count
0 5 10 15 20

(a) Intensity + Huber
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(b) Intensity + L2
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(c) Descriptor Field + Huber
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(d) Descriptor Field + L2
Figure 20: Results for alignment error discrimination for Figure 18b.
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(a) Intensity + Huber
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(b) Intensity + L2
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(c) Descriptor Field + Huber
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(d) Descriptor Field + L2
Figure 21: Results for alignment error discrimination for Figure 18c.
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(a) Intensity + Huber
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(b) Intensity + L2
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(c) Descriptor Field + Huber
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(d) Descriptor Field + L2
Figure 22: Results for alignment error discrimination for Figure 18d.
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4.3 Detection by color segmentation

We evaluate the detection rate of our color segmentation algorithm by manually counting
the number of true and false positive detections in the four videos shown in Figure 23. We
use the same parameters (color and area thresholds) for all videos, instead of tuning them
for each particular video, to see if the algorithm is robust against scene changes when the
parameters are �xed. The latter is similiar parameter sensitivity, that is, how much the color
and area thresholds can be adjusted without a�ecting the performance.

(a) Competition venue (b) Full-scale test at gym

(c) Small-scale test at lab (d) Small-scale test at gym
Figure 23: Videos used to evaluate the color detector.

Figure 23 shows an extract of frames from four videos that we use to evaluate the detection
rate. Video (a) contains one red and one green target, and has the quadrotor landing on the
targets twice. Video (b) contains two targets, but the lighting is of a higher temperature
and the �oor texture is brown paper and tape. Video (b) also contains the quadrotor land-
ing on both targets. Video (c) contains a single red target, the red and green arena edges, a
red pillow, a red shirt, the author’s socks and pants, someone else’s socks and pants, a red
Tenga screwdriver, a pair of red pliers and, in general, just a lot of stu�. Video (d) contains
no targets whatsoever, but has a lot of green marker lines.
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4.3.1 Detection rate: Competition venue

Figure 25 shows the detection rate for the video in Figure 23a. The detector had zero false
positives, and was able to recognize the top plates as long as a su�ciently large portion
was visible and well lit. Figure 24 shows a selection of frames. It correctly identi�ed both
targets whenever they were su�ciently centered, and at about 1 meter altitude (a). Targets
were missed when the segmented pixels did not occupy enough image area (b). The green
plate was correctly identi�ed during a landing (c), until the camera was close enough to
occlude most of the plate (d), at which point the �lled area was too small compared to the
bounding box.

(a) Both targets in view and identified (b) Both targets in view, one missed

(c) Close-up of green target, identified (d) Close-up of green target, missed
Figure 24: A selection of frames from Figure 23a. Components that passed the aspect ratio and area
tests are drawn with neon bounding boxes. Segmented pixels are otherwise drawn in yellow.
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Figure 25: Detection rate for the video in Figure 23a. We manually counted the number of targets
actually in the frame (gray), the number of targets that were correctly identified (black), and incorrectly
identified (stipled).
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4.3.2 Detection rate: Full-scale test at gym

Figure 27 shows the detection rate for the video in Figure 23b and Figure 26 shows a selec-
tion of frames. The detector had a single false detection in this video caused by a shadow
with a green tint when �ying low during a landing (c). It consistently found targets when-
ever they were visible, well lit and su�ciently centered, and correctly merged plate regions
seperated by a black cable (a). The merging sometimes included unrelated pixels that were
close enough (b). Some regions outside the arena looked su�ciently red, but were correctly
ignored because they were too small (d).

(a) Cable running across plate (b) Incorrectly merged neighbour components

(c)Misidentified shadow (d) Correctly unidentified speckles
Figure 26: A selection of frames from Figure 23b. Components that passed the aspect ratio and area
tests are drawn with neon bounding boxes. Segmented pixels are otherwise drawn in yellow.
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Figure 27: Detection rate for the video in Figure 23b. We manually counted the number of targets
actually in the frame (gray), the number of targets that were correctly identified (black), and incorrectly
identified (stipled).
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4.3.3 Detection rate: Small-scale test at lab

Figure 29 shows the detection rate for the video in Figure 23c and Figure 28 shows a selec-
tion of frames. The detector had several false detections due to shirts (b) and pillows (d). It
correctly ignored the red line (a) and the green line (c). It identi�ed the red target whenever
it was su�ciently centered, which it wasn’t in (c). Regardless, some portion of the red plate
was always segmented, even when it was far away (d), although the required pixel count
threshold caused it to be ignored.

(a) Red line (ignored) (b) Red shirt (identified)

(c) Green line (ignored) and red target (ig-
nored)

(d) Red target (ignored) and chair pillow (iden-
tified)

Figure 28: A selection of frames from Figure 23c. Components that passed the aspect ratio and area
tests are drawn with neon bounding boxes. Segmented pixels are otherwise drawn in yellow.
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Figure 29: Detection rate for the video in Figure 23c. We manually counted the number of targets
actually in the frame (gray), the number of targets that were correctly identified (black), and incorrectly
identified (stipled).
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4.3.4 Detection rate: Small-scale test at gym

Figure 31 shows the detection rate for the video in Figure 23d and Figure 30 shows a selec-
tion of frames. The detector incorrectly identi�ed a partially visible piece of green tape (b),
but correctly identi�ed nothing else throughout the rest of the video, even though there
were lots of green tape and even something red in the background (a).

(a) Green lines and something red (all ignored) (b) Part of green line (identified)
Figure 30: A selection of frames from Figure 23d. Components that passed the aspect ratio and area
tests are drawn with neon bounding boxes. Segmented pixels are otherwise drawn in blue.
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Figure 31: Detection rate for the video in Figure 23d. We manually counted the number of targets
actually in the frame (gray), the number of targets that were correctly identified (black), and incorrectly
identified (stipled).
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4.4 Discussion

The color segmentation algorithm appears to work rather well, although it is clearly fragile
to incorrect detections, as there are many things that can have the same geometric and
photometric properties as those we search for. First, there are obvious objects, perhaps
placed with malicious intent, such as chair pillows or shirts of bystanders. Any object that
is not a target or a drone is banned from the inner arena by the competition rules, but may
accidentally come into view when the camera is near the arena edges. This risk can be
mitigated if the drone position is known (which it hopefully is when the arena edge is
visible), by ignoring detections that end up outside the arena.

A far more problematic case are the non-obvious objects, such as a green piece of tape
that is partially occluded, perhaps just for a moment by a play of light and shadow, such
that it appears to have the correct geometric properties. Since there are no restrictions
on the type of pattern of the arena �oor, such detections could occur both spuriously or
permanently, depending on the particular pattern and the variability of the lighting or
viewpoint.

Glare on the top plates cause the segmentation to miss pixels, and predict the wrong center
point. This could be mitigated by incorporating a “soft” threshold when growing connected
components. That is, a pixel that is added to a component that is mostly comprised of red
pixels, can have a lower threshold to entry. Incorrectly labelled pixels like in Figure 26b
cause the center point to shift o� the plate. Since these outliers appear to be outnumbered
by the number of pixels on the actual plate, this could be mitigated by using the median
instead of the mean as the center point.

Many of the issues can probably be mitigated by sophisticated tracking. For example, a
detection that only lasts a single frame is unlikely to be correct. One could therefore elim-
inate spurious detections by requiring a detection to occur over several frames, as a mea-
sure of its saliency, before accepting it. Tracking the motion of the components over time
could be used to reject persistent, yet false, detections. For example, erratic motion is likely
a sign of a false detection since the targets move in smooth paths (if not then landing on
robots is perhaps not of primary concern at the moment). Zhao et al. [52] use this principle
in their algorithm for tracking humans and their limbs.

We had hoped that image alignment would help the color detector remove false detections,
and also more provide accurate pose estimates, since the position estimated from on-board
sensors and potentially perturbed by glare and outliers might not be su�ciently accurate
for control. That being said, we have not quanti�ed the required accuracy, since we have
yet to perform our motion-tracked landing experiments.

To remove false detections the objective function must be su�ciently discriminative. That
is, correct alignments must have an error that is su�ciently distinct from any other pose
estimate. As long as the target is su�ciently far away and centered, the alignment error
appears to be an appropriate discriminator. When the target is close or o�-center, the align-
ment error at the correct pose is quite high, due to model errors, and there is less margin
for a threshold to discriminate correct and incorrect alignments. This could potentially be
mitigated with a 3D model.
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The accuracy of the estimated pose is limited by the accuracy of the model. The top plate
dominated in all objective functions, and tended to cause erroneous pitching and rolling
when the target was close to the camera or o�-center. Again, this could be mitigated with
a 3D model. Alternatively, a weight mask that decreases the importance of top plate pixels,
and increases the importance of pixels on the planar portion of the target, could potentially
mitigate this. In particular, the target has two holes on the front and back of the circular
plane. These could be assigned a high weight to be prioritized in the alignment, so that a
planar model would still be applicable at dramatic viewpoints.

We observed oscillation and signs of instability when the target had a small area in the
image. Reducing the smoothing and the number of image pyramids mitigated the issue, but
caused very slow convergence for the opposite case. This suggests that we should select
the level of detail based on the area of region considered for alignment.

All objective functions were unable to reject prominent glare, and tilted erroneously to
compensate. Increasing the regularization of the pitch and roll components mitigated this
issue slightly, but in return the position would sometimes be o�. Despite being twice as
computationally costly as the intensity metric, the descriptor �eld metric was not more ro-
bust against model errors, specular highlights or misleading backgrounds. Moreover, it had
a narrower basin of convergence. We think a color segmentation includes specular regions,
the intensity metric, and some image preprocessing to eliminate bias and gain, would be
more robust and e�cient than descriptor �elds, but did not investigate this further.
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5 Conclusion
In this project report, we have studied the problem of detecting moving objects from a
MAV for Mission 7 of the International Aerial Robotics Competition. We did a literature
survey and covered both general object detection methods and prior work for the partic-
ular IARC problem. We also gave a focused review of color segmentation in uncontrolled
lighting and pose estimation by direct image alignment.

Since we believe surveys alone do not fully capture the subtle issues that arise in practice,
atleast in the domain of computer vision, we tried to solve the IARC target detection prob-
lem ourselves and �nd out where the challenges lie. We applied the color segmentation and
image alignment theory from our survey, and implemented a solution that detects targets
in two-steps. First, the top plates are segmented by their distinct color, then, the resulting
pose estimates are re�ned by Gauss-Newton optimization on a dense photometric simi-
larity function. Our motivation for a two-step solution was that color segmentation could
globally detect targets from single frames, but with a high risk of false positives and insu�-
cient accuracy for visual servoing. We therefore follow with a local method that can verify
detections and generate accurate pose estimates.

We evaluated our solution on videos from the o�cial competition and our lab. The color
detector was able to segment the top plates as long as they were su�ciently centered at
an appropriate distance from the camera. False detections were primarily caused by in-
tentionally similar objects, such as people or walls outside the arena, and intermittent
happenstances, such as marker lines that are momentarily lit and shaded in just the right
way. The image alignment algorithm also worked well when the target was su�ciently
centered and not too close. In these cases, it provided pose estimates that were as accurate
as the model allowed, and the alignment error could discriminate true detections from false
detections. However, its performance degraded at viewpoints where the planar model is a
poor approximation.

5.1 Future work

In summary, we would not use our solution on the drone. Even though the color segmen-
tation works surprisingly well, and can run at video rate already, the image alignment is
not quite as robust as we would like it to be. In particular, it is unable to re�ne poses or
discriminate detections when the target is viewed from certain viewpoints. Moreover, it
is too slow as it is, and would require clever optimization to run in real-time on-board, al-
though we don’t think this is impossible. We conclude our report with some thoughts on
improvements and alternative strategies.

5.1.1 Color segmentation

The pixel center produced by the color segmentation can be anywhere on the actual plate
when it is corrupted by specular highlights. Furthermore, if the plate is strongly shaded,
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it is possible for the plate to be missed entirely. This could be improved by using a soft
threshold in the connected components computation, to allow bright pixels to become part
of adjacent green or red components. A more costly alternative is mean-shift segmentation,
which might handle large color variation better, and could be initialized with a uniform
threshold segmentation. Other color space transformations could also be interesting to
study. Tracking could also be used to reduce the e�ect of noise and lighting, as well as re-
ject false positives. This could be done in image-space or in world-space, and could include
various measures of saliency, such as number of frames a detection has been active, or on a
motion model.

5.1.2 Image alignment

The target appearance is subject to sudden change, and we may only get a good look once
we arrive at the competition venue. We should therefore have a way to easily generate
the model. We can already do this if the model is a planar texture, but a 3D model requires
more work. One could make a graphical user interface for combining geometric primitives,
such as plates and cylinders, and texture mapping the geometry based on camera images
by backprojection. Another option is to obtain the geometry directly from camera images
using 3D reconstruction software. In its current form, the top plate actually consists of two
plates connected by a hinge. This means that the target is not actually a single rigid object,
but is instead a kinematic chain. In practice, we see that the moving plate can have a large
impact on the silhouette of the plate, especially when viewed from a low vantage point. For
further accuracy, the model may need to include the angle of the moving plate as another
optimization variable.

Neither the intensity metric nor the descriptor �eld metric were able to reject specular
highlights. Since the descriptor �eld metric was otherwise costly, complex and had a
smaller basin of convergence, it does not appear to have any strong bene�ts other than
being invariant to global lighting. The intensity metric could cope with global gain and
bias by �ltering the input, as in [34]. An explicit lighting model could include specular
highlights in the synthesized image, and could be estimated during runtime or be manu-
ally calibrated o�ine. The latter might be su�cient in our case, since the ceiling lights are
likely �xed and constant throughout the day.

We noticed instability, particularly for the descriptor �eld metric, when the target was
far away. This was mitigated by increasing the regularizer term, but even this failed on
certain images. The correct �x was to reduce the amount of smoothing for these images, by
dropping levels of the image pyramid or reducing the width of the blurring kernel. Ideally,
the level of detail should be dynamically selected based on target’s area in the image. Small
areas should be kept at a high resolution, while large areas should be heavily smoothed.

The practical implementation of the cost function was quite unruly due to all the partial
derivatives, and the mathematical intent is mostly lost. This makes the code di�cult to
understand by other people, but it also makes it tedious to make changes. For example,
adding optimization variables would require us to derive several partial derivatives by
hand. Optlang [13] is a Domain Speci�c Language currently in development, and is a small
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programming language made speci�cally for energy minimization algorithms, such as im-
age alignment. It lets the programmer express the cost function in code, and will internally
generate symbolic Jacobian expressions and output optimized CUDA code or object �les.
We hope that this will also support a CPU target, since we think the bottleneck will be the
memory transfer from CPU to GPU in each iteration, rather than the time taken per actual
iteration. Heterogeneous compute, wherein CPU and GPU memory are shared, could alter-
natively lower the cost of memory transfer and allow for quite a speedup. For CPU targets,
Intel’s ISPC lets programmers easily write cross-platform SIMD code, but is not a language
focused merely on energy optimization.

We think dense generative methods can give very accurate pose estimates, but only if the
image formation model is su�ciently accurate. In particular, it requires a good model of
the object and the scene, as well as the geometric and photometric qualities of the cam-
era. It does, however, remain to be seen how much accuracy is actually needed for visual
servoing.

5.1.3 Alternative approaches

Not documented in this report is our attempt to detect the elliptical shapes of the targets
using the Hough transform. We found a clever way to reduce the problem into a search for
circles of a �xed radius. However clever this was, it was optimization for naught, since the
main issue was that it, surprisingly, still had many false positives. For example, two inter-
secting lines look very similiar to the quarter of a circle. Naturally, the circle detector could
be combined with the color detector, as was our original intention, but we still struggled to
obtain accurate position estimates. The false detections contaminated the true detections
in the Hough space, and the target body was quite sparse and not as circular-looking as
we would have expected, after we passed it through a Sobel �lter. This could perhaps be
improved with a di�erent �lter, or forgoing a Hough transform altogether.

Convolutional neural networks are rapidly gaining traction in this day and age, and Ascend
NTNU has a group working on this. As it stands, evaluating the network takes several
hundred milliseconds on a powerful desktop computer. We therefore think this would
primarily be interesting for verifying detections from a simpler detector, such as our color
segmentation. Other machine learning techniques, such as Support Vector Machines, are
also viable alternatives, and have been used in prior IARC work.

Feature-based methods is the traditional branch of object detection, and could be used to
detect targets globally from single frames, and even provide accurate 3D pose estimates.
We did have a group working on this, who found that SIFT features were infact applicable,
although quite slow. Binary features have been gaining interest as of late, and could be an
alternative to SIFT features.
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A Derivations
A.1 Interaction matrices for pinhole and equidistant camera projections

Denote by Hc
o = {R

c
o ,T

c
o } the object frame {O} decomposed in the camera frame {C}, and

denote by u = (u,v) the projection of a point po �xed to the object, obtained by transform-
ing the point to the camera frame pc = Hc

o ◦ po = (x, y, z) and projecting the result into
the image u = π(pc ). Suppose the object frame is undergoing rotation and translation
described by the twist ξ = (ω,v) ∈ se(3), i.e. Ḣc

o = ξ
×Hc

o
5. The resulting motion of the

point on the object, decomposed in the camera frame, is then

ṗc =
d
dt

(Rc
opo + Tc

o )

= Ṙc
opo + Rc

o ṗo + Ṫc
o

= ω×Rc
opo + 0 + Ṫc

o

= ω×(Rc
opo + Tc

o ) + Ṫc
o − ω

×Tc
o

= ω×pc + v

which we can write in scalar form as

ẋ = ωy z − ωz y + vx

ẏ = ωz x − ωx z + vy

ż = ωx y − ωy x + vz

(42)

The pinhole projection Eq. ?? is

u = u0 + f
x
−z

v = v0 − f
y

−z

and the time derivative, using the chain rule, is

u̇ = f
−ẋ z + xż

z2

v̇ = − f
−ẏz + y ż

z2

Substituting Eq. 42 we can write this as



u̇
v̇


=



f xy
z2 − f (1 + x2

z2 ) f y
z − f 1

z 0 f x
z2

f (1 + y2

z2 ) − f xy
z2 − f x

z 0 − f 1
z f y

z2





wx

wy

wz

vx

vy

vz


5This is the left-multiplicative formulation, and leads to left-hand composition: Hc

o ← exp(ξ)Hc
o . The

alternative is the right-multiplicative formulation, where Ḣc
o = Hc

o ξ
×, which leads to right-hand composition.
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or in concise matrix form
u̇ = J (x, y, z)ξ

The 2 × 6 matrix J is commonly called the image Jacobian or the interaction matrix in
robotic literature related to vision-based control [8, 44]. A similiar derivation holds for the
equidistant projection Eq. 11, where

u = u0 + r
x
l

v = v0 − r
y

l

r = f tan−1 l
−z

l =
√

x2 + y2

Computing u̇ and v̇ is merely a matter of being meticulous, or — for those of us with less
time on our hands — being quaint with a symbolic equation processor. Let us investigate
how we can compute the derivatives using the symbolic toolbox from MATLAB. First, we
implement the above equations as symbolic expressions

syms u0 v0 x y z f;

l = sqrt(x*x + y*y);

r = f*atan(-l/z);

u = u0 + r*x/l;

v = v0 - r*y/l;

We then apply the chain rule on each coordinate

u̇ =
∂u
∂x

ẋ +
∂u
∂y

ẏ +
∂u
∂z

ż

v̇ =
∂v

∂x
ẋ +

∂v

∂y
ẏ +

∂v

∂z
ż

using the diff function on u and v, e.g.

>> diff(u, x)

ans = f*x^2*atan((x^2 + y^2)^(1/2)/z))/(x^2 + y^2)^(3/2) -

f*atan((x^2 + y^2)^(1/2)/z)/(x^2 + y^2)^(1/2) -

f*x^2/(z*(x^2 + y^2)*((x^2 + y^2)/z^2 + 1))

Unfortunately, the output is not immediately useful since we would rather simplify

f*atan((x^2 + y^2)^(1/2)/z))

to −r . When we actually compute the derivatives, both the camera-space coordinate pc

and the image-space coordinate u are available. Therefore, we have a cheap way to com-
pute r =

√
u2 + v2 with a single norm evaluation, instead of the above expression that has

one inverse tangent, a norm, and a division. We will spare the reader the tiresome proce-
dure of simplifying each expression, su�ce to say it came in handy to have a text editor
with �nd-and-replace functionality. After some minutes of work of labour, we can rede�ne
the partial derivatives in terms of a few (known) auxiliary variables
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syms r c s l L f;

dudx = r*s*s/l - f*c*c*z/L;

dudy = -c*s*r/l - f*c*s*z/L;

dudz = f*x/L;

dvdx = f*c*s*z/L + r*c*s/l;

dvdy = -r*c*c/l + f*s*s*z/L;

dvdz = -f*y/L;

where c = x/l, s = y/l and L = x2 + y2 + z2. By rede�ning r and l we can prevent MATLAB
from expanding those variables in subsequent expressions. Finally, we can evaluate the
total derivatives

syms wx wy wz vx vy vz;

dx = wy*z - wz*y + vx;

dy = -wx*z + wz*x + vy;

dz = wx*y - wy*x + vz;

du = dudx*dx + dudy*dy + dudz*dz;

dv = dvdx*dx + dvdy*dy + dvdz*dz;

and, if the expressions turn out to be linear, we can extract the Jacobian matrix using the
collect function

collect(du, [wx wy wz vx vy vz])

collect(dv, [wx wy wz vx vy vz])

This gives



u̇
v̇


=



Az + f xy
L Bz − f x2

L −By − Ax B −A f x
L

Cz − f y2

L Dz + f xy
L −Cx − Dy D −C − f y

L





wx

wy

wz

vx

vy

vz



where

A = csr/l + f csz/L

B = ssr/l − f ccz/L

C = ccr/l − f ssz/L

D = csr/l + f csz/L

c = x/l

s = y/l

L = x2 + y2 + z2
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