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Abstract

We explore the use of continuous signed distance func-
tions as an object representation for 3D vision. Popular-
ized in procedural computer graphics, this representation
defines 3D objects as geometric primitives combined with
constructive solid geometry and transformed by nonlinear
deformations, scaling, rotation or translation. Unlike its
discretized counterpart, that has become important in dense
3D reconstruction, the continuous distance function is not
stored as a sampled volume, but as a closed mathematical
expression. We argue that this representation can have sev-
eral benefits for 3D vision, such as being able to describe
many classes of indoor and outdoor objects at the order
of hundreds of bytes per class, getting parametrized shape
variations for free. As a distance function, the represen-
tation also has useful computational aspects by defining, at
each point in space, the direction and distance to the nearest
surface, and whether a point is inside or outside the surface.

1. Introduction
An essential problem in computer vision is that of infer-

ring a description of the 3D environment from cameras or
other sensors. Solving this problem is key to programming
robots that can act in and interact with the world around
it. Object recognition and Simultaneous Localization and
Mapping (SLAM) encompass attempts at solving this prob-
lem: SLAM aims to build a map of the environment and
estimate the pose of the observer, while object recognition
aims to recover the 3D pose and shape of known objects.

State of the art in SLAM represent the map at a low-level
[6]: e.g. feature point clouds, meshes or occupancy grids.
Such descriptions are useful for mapping algorithms, but
fall short for further scene analysis. For this reason, there is
a growing research focus on building high-level maps, i.e.
by incorporating object recognition.

High-level maps provide valuable information that can
feed back into the mapping process, as knowledge of ob-
jects and their behaviour informs how their geometry should

(a) Furniture formed by combining primitives

(b) Variations generated by adjusting parameters

(c) Mechanical parts with symmetry and repetition

(d) Cars formed by smoothly combining cubes and cylinders

(e) Houses with symmetry, repetition and shape duplication

Figure 1: Objects modelled by combining geometric primi-
tives with constructive solid geometry, enabling an expres-
sive modelling language that can describe many man-made
objects, and also exploit symmetries and repeated details.
Each object is defined by a closed mathematical expression
that can be stored in compiled bytecode in the order of 100
bytes of instructions, and can generate infinitely many vari-
ations by controlling the parameters that define the primi-
tives and the operations combining them.
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be treated [4] (i.e. short- or long-term landmarks); prior
knowledge about the scale and surfaces of objects can re-
duce noise or remove outliers [20], resolve scale ambiguity
in monocular setups [27], identify occluded geometry [47],
or compress the map [46]; higher-level landmarks can fa-
cilitate place recognition and loop-closure algorithms [6];
and imposing structural constraints can improve tracking
accuracy or robustness in adverse conditions [13, 36]. A
high-level description also facilitates tasks the user might
have: the presence and location of objects is useful in path-
planning, obstacle avoidance or interaction; shapes can be
completed from partial measurements using prior knowl-
edge, e.g. for urban reconstruction; or the scene type can
be identified, such as “kitchen” or “highway”.

High-level maps will be key to deploying robots: to pro-
gram an autonomous car, it is not enough to have a point
cloud of the immediate surroundings; to plan paths and obey
traffic rules, we must know where the road, the lanes, and
other people in traffic are. Such information can only be
acquired by imposing our world knowledge into algorithms
that are, otherwise, oblivious to these concepts.

However, the ideal representation of such knowledge is
an open problem [6], as representations differ in their de-
scriptive power, storage and pre-processing requirements,
implementation complexity, suitability for inference, scala-
bility to larger scenes, and adaptability to variations.

In computer graphics, continuous signed distance func-
tions have become popular among the demoscene commu-
nity for procedurally modelling scenes with a limited mem-
ory budget (Fig. 1). Although discrete signed distance func-
tions are an established tool in computer vision for high-
quality 3D reconstruction [16], its continuous counterpart
has not received much attention despite having compelling
properties:

• It is highly expressive: Simple and complex scenes can
be defined with the same mathematical tools used by
Computer Aided Design (CAD) engineers for decades,
supporting also perfectly curved surfaces, like cylin-
ders or spheres, and infinite geometry like planes or
half-open cubes. With extra effort, image appearance
can be included via procedural coloring, texture maps
or other shading techniques.

• It is useful for processing: Being a signed distance
function, the direction and distance to the nearest sur-
face can be directly evaluated at any point in space,
as well as whether the point is inside or outside
the surface; information which would need expensive
searches in meshes or point clouds, possibly through
complicated volume acceleration structures. This in-
formation is of great use in many applications, such as
robotic motion planning and optimization.

• It is cheap to store: A variety of surfaces can be exactly
defined by mathematical expressions, using orders of
magnitude less memory than their discrete counterpart
and avoiding the need for compression [34, 7, 16].

• Surfaces can be updated at zero cost: Variations can
be generated by adjusting the parameters that define
the combination and transformation of primitives, thus
avoiding an expensive process of updating a boundary
representation or storing large additive structures.

• Models can be “written down on a napkin”: Modelling
can be done simply with a text editor, thus avoiding the
need to install and learn special tools, and avoiding the
complexity needed to import and process binary or text
formats; all that is needed is to convert the mathemati-
cal functions to the programming language of choice.

In this paper we explore the use of continuous signed dis-
tance functions in three areas: (1) In modelling man-made
objects; (2) In recovering the pose and shape of objects from
a scene; (3) In improving the mapping process or informing
the task at hand. We first give the reader some context by
reviewing how distance functions have been used in related
work, and where potential benefits arise in the problem of
building high-level maps. We then review the conceptual
tools for modelling objects with distance functions, before
presenting application vignettes, supported by surveys and
qualitative modelling studies, to suggest possible uses and
limitations within 3D scene reconstruction and analysis.

2. Related work
In computer graphics, signed distance functions (SDF)

have been used to model scenes with deformable nature-like
geometry [15]; render high-quality text [28]; render shad-
ows and other effects [55]; or make 3D content generation
more accessible [31, 22]: in particular, Dreams by Media
Molecule [22] is an art game that uses geometric primitives
as “brushes” that the player can use to sculpt a scene. By
representing the scene and the primitives as signed distance
functions, they are able to perform incremental scene up-
dates in real-time, which is difficult with triangle meshes.

In SLAM, signed distance functions have been useful
for merging depth measurements into one cohesive surface:
i.e. the truncated signed distance function (TSDF), popu-
larized by Newcombe et al. [38], is considered to be im-
portant for dense 3D reconstruction [16], due to its bene-
fits for modelling continuous surfaces, dealing with noise,
and efficient incremental updates. An issue with TSDFs is
their large storage requirement due to discretization [16];
although compression methods have been derived [7, 16],
these come at the price of added complexity, inaccuracy
and artifacts. Continuous distance functions could give the
needed scalability, but have yet to be used in this domain.



Incorporating prior world knowledge to build high-
level maps has been done by imposing assumptions on the
scene type: i.e. containing mostly flat surfaces, cubes or
vertical walls, or containing (partially) known objects; and
then inferring its parameters: e.g. pose and shape param-
eters of objects, or the location of the vertical walls. For
objects in particular many representations have been de-
vised; balancing suitability for detection, parameter estima-
tion and adaptability to variations in shape and appearance,
with implementation complexity, storage requirements and
use in further scene analysis. Some examples include 3D
point clouds with associated image descriptors [27, 44],
CAD meshes [35], deformable wireframes [10], and models
built from hand-crafted or learned descriptors [57, 50].

Of particular relevance is the deformable SDF represen-
tation introduced by Prisacariu et al. [42, 21, 58]: storing
objects as discrete SDFs with the space of shape variations
built from examples. However, storing a single object class
with 100 shape parameters in a 2563 SDF, at 32-bit preci-
sion, requires 6.4 gigabyte of memory. While compression
can reduce the same data down to 6 megabyte [42], this
introduces artifacts and complexity, and decompression in-
curs a performance hit during parameter estimation. In con-
trast, continuous SDFs can describe articulation and vari-
ability at the order of hundreds of bytes, uncompressed.

Objects as volumetric primitives appears to be a
resurging representation: Tulsiani et al. [53] convert de-
tailed 3D objects into collections of cubes, and note that
such a representation can be useful for shape manipulation
and similarity reasoning. Similar to this paper, they use a
continuous distance function to measure discrepancy be-
tween the assembled shape and the input shape. This pa-
per takes the notion further and considers objects as collec-
tions of more diverse primitives using techniques from the
CAD/CSG and demoscene communities.

3. Continuous Signed Distance Functions

3.1. Definition

The distance function [26] f(p) : R3 → R of a set of
surface points S is defined as the distance from p to the
closest point in S:

f(p) = min
q∈S
||p− q|| (1)

where the surface itself is given by the level-set or iso-
surface S = {p : f(p) = 0}, and the distance || · || is some
metric on R3. Signed distance functions encode which side
a point is on by the sign of f , such as taking outside as
positive and inside as negative. Continuous signed distance
functions (CSDF) are represented by a closed expression,
unlike their discretized counterpart, which are represented
as sampled volumes.

A simple example of a continuous signed distance func-
tion is that of a sphere of radius r centered at the origin. For
any point p = (x, y, z) ∈ R3, the function f : R3 → R
gives the signed distance between p and the closest point
on the surface of the sphere, and can be written under the
Euclidean distance metric as:

f(p) =
√
x2 + y2 + z2 − r (2)

The above is also an example of an implicit surface.
While parametric surfaces or boundary representations,
such as that of a triangle mesh or a spline patch, is de-
fined by a function that, given parameters, produces a point
in space, an implicit surface is defined by a function that,
given a point in space, indicates whether the point is on the
surface or not. In general, this function does not define a
geometric distance. For example, we could have described
the sphere as the level-set of

f(p) = x2 + y2 + z2 − r2 (3)

which defines an algebraic distance. Implicit surfaces have
a long history (see e.g. [26]), but the subset of implicit sur-
faces defined by signed distance functions have a number of
useful properties for robotics, computer vision and graph-
ics. For example, unlike boundary representations, it is triv-
ial to determine whether a point is inside, on or outside a
surface, as the function that gives this information is defined
everywhere in space. Further, the gradient of f(p) provides
the surface normal if p is on the surface, and the direction
towards the closest point on the surface otherwise. Finally,
in the next sections, we will see that complicated surfaces
can be described with constructive solid geometry.

3.2. Distance metrics

The Euclidean distance l2 is often used because of its
utility in many applications: i.e. in motion planning [41, 54]
or in optimization [32]. For one, it is rotation invariant,
meaning that shapes look the same after rotation. It is
also smooth with respect to its variables, which is desirable
when computing gradients. Other metrics can have advan-
tages over the Euclidean norm [54]: i.e. the max-norm l∞
can in some cases be cheaper or simpler to compute.

In the remainder of this paper, distance functions are as-
sumed to use the Euclidean l2 metric, keeping in mind that
the results and techniques presented may not be valid under
other metrics.

3.3. Modelling scenes

Although distance functions have been derived for com-
mon geometric primitives, such as the cube, sphere and
cylinder (see [29] and Fig. 2), deriving the distance func-
tion by hand is not a strategy that scales to complicated
scenes. Thankfully, by defining a membership predicate



over the entire domain, implicit surfaces are compatible
with boolean operators from constructive solid geometry
(CSG). This allows us to combine primitives with the well-
known set operations: union, intersection, complement and
difference. For signed distance functions, these can be im-
plemented with min and max functions (Fig. 3):

intersection(S1, S2) := max(fS1 , fS2) (4)
union(S1, S2) := min(fS1 , fS2) (5)

complement(S) := −fS (6)
difference(S1, S2) := max(fS1 ,−fS2) (7)

Although the resulting distance function is not strictly Eu-
clidean (Fig. 9), it is often a good approximation close to
the surface [26]. Other implementations of the set opera-
tions have been derived (see [24, 23]); these aim to strike
a balance between accurately approximating the Euclidean
distance and being differentiable everywhere (Fig. 10).

A variety of domain operations are also possible [45].
Shapes can be rotated and translated by applying the inverse
transformation on the input domain (Fig. 4):

rotate(S,R) := fS(R
T p) (8)

translate(S, T ) := fS(p− T ) (9)

Rotation and translation are examples of isometric transfor-
mations, meaning they do not change the distance between
two points. Examples of non-isometric transformations in-
clude twisting, blending or scaling. For example, an object
can be scaled by applying the (inverse) scale to the input:

scale(S, k) := fS(p/k) (incorrect)

but the resulting function no longer defines the distance in
the original coordinate system. For uniform scaling this is
fixed by scaling the result appropriately:

scale(S, k) := fS(p/k)k (10)

Other deformations such as non-uniform scaling, twisting
or blending cannot be repaired to recover a correct distance
function (Fig. 7). However, scaling factors can be derived
that ensure that the distance function never overestimates
[29]. One could also approximate the distance by the first
order expression [24, section 5.3]

f(p)

||∇f(p)||
(11)

which can also estimate the distance to a generic implicit
surface. Since the error tends to grow larger further away
from the surface, one could substitute the object with a
proper bound, such as a simple bounding shape, for points
outside so as to limit the approximation error.

Domain mirroring and repetition can describe visually
complex objects by exploiting symmetry and duplicated de-
tails (Fig. 5 and Fig. 6). However, the resulting distance
function may be discontinuous, in that there can be a jump
at the interface between the repeated domains, which can
cause distances to be overestimated (Fig. 8). This can be
handled by ensuring that the object being repeated is sym-
metric about the plane orthogonal to the axis of repetition,
such that distances are exactly equal at the interface.

(a) Cube (b) Sphere (c) Cylinder

(d) Torus (e) Prism (f) Cone

Figure 2: Basic primitives (see [37, 29])

(a) Union (b) Intersection (c) Difference

Figure 3: Basic distance operations with min and max.

(a) Rigid transform (b) Mirroring (c) Repetition

Figure 4: Basic domain operations implemented with
matrix- and vector multiplication and addition on the input
points (a); taking the absolute value of one or more of the
input coordinates (b); taking the modulus of one or more of
the input coordinates (c)



(a) Base (b) Notches (c) Beams

Figure 5: A cross shaft modelled by subtracting one cylin-
der from a larger cylinder to form the base; adding a tall,
thin cylinder and repeating it with polar repetition to form
the inner notches; adding cylindrical flanges with a cham-
fered union; and combining multiple cylinders and repeat-
ing them at 90 degree angles to form the beams.

(a) Cylindrical notch (b) Prism notch (c) Cube notch

Figure 6: The visual complexity is detached from the struc-
tural complexity, in that there is only a single notch shape
defined, which is repeated across the cylinder. This can
greatly reduce modelling time and storage cost, while al-
lowing changes to the notch to be automatically reflected
everywhere.

(a) Bent cube (b) Screwed cube (c) Inflated cube

Figure 7: More complex shapes can be modelled with non-
linear domain transformations, however, the resulting func-
tion will no longer be a valid distance function. The error
can be visualized through the cut 2D distance field, by ob-
serving that isolines (red) no longer describe a constant dis-
tance to the surface: in (c) the lines A and B, indicating the
shortest paths to the surface, are not the same length even
they are on the same isoline. Note that this error tends to be
smaller near surface: see the nearest isolines in (c).

(a) Discontinuous interface (b) Continuous interface

Figure 8: Repetition will in general not preserve continuity
and can cause distances to be overestimated: On the left a
rotated cube is repeated along one axis. A point P incor-
rectly evaluates the distance to be toward the center cube,
even though the shortest distance is in fact up across the in-
terface. On the right is shown a repeated cube where the
distances are equal on both sides of the domain interface,
and thus no overestimation is done.

(a) Incorrect distance (b) Correct distance

Figure 9: The min or max of two Euclidean distance func-
tion do not always result in a Euclidean distance: On the
left is shown a cube with a smaller cube subtracted. Note
the incorrect distance near the corners of the inner region.

(a) Hard union (b) Soft union

Figure 10: The min or max of two distance functions does
not always preserve smoothness. On the left (a) is shown
the normal “hard” union (min) of two primitives. Note the
kinks where the two sets of isolines meet, in contrast to the
“soft” union on the right (b). Some implementations can be
found in hg sdf [37]. See also [23].



4. Applications
We now explore the use of CSDFs in three areas: (1)

modelling objects; (2) pose and shape estimation; (3) im-
proving mapping and scene analysis. Our discussion is
based on surveys: looking for pipelines where the object
representation could be replaced by CSDFs and considering
the implications of doing so; and qualitative studies where
we model selected objects by hand and discuss the expres-
sive power, in terms of what kinds of objects and what level
of detail is best suited for the representation, as well as the
complexity involved in storing and operating on CSDF ob-
jects in a programming language.

4.1. Modelling tools

Text-editor. The most basic tool consists of a text-editor,
in which code for the distance function is written by hand,
accompanied by a GUI to visualize the scene. Examples of
such tools can be found online1, where the user can define a
distance function in a C-like language and see the resulting
scene live. Visualization can be done by sphere-tracing —
an efficient ray tracing technique that exploits the distance
function to traverse the space in step sizes guaranteed to
never overstep the surface [29, 33] — or by rasterizing a
mesh or point cloud obtained by iso-surface extraction [26].

Graphical editor. Some tools mimic the interface of
traditional modelling software: Reiner et al. [45] made an
editor with a live 3D view where primitives can be manip-
ulated with a mouse and keyboard. They support several
modes of manipulation, including rigid-body transforma-
tion, scaling, and adjusting properties, such as radius or
height, with sliders; as well as the basic distance and do-
main operators. Code for the resulting distance function is
automatically generated and exportable.

3D scanning is an alternative to manual modelling that
has contributed to large object databases [11] in the form
of meshes and point clouds. However, although CSDFs
can be converted to a mesh or point cloud, generating a
CSG structure from a boundary representation is ongoing
research. Some recent work include Andrews et al. (2013)
[1], who semi-automatically reverse-engineer meshes into a
CSG tree; and Fayolle et al. (2016) [24], who detect prim-
itives from a point cloud, and formulate an optimization
problem to recover a CSG tree that combines the primitives
to best fit the point cloud.

CAD software. CSDFs share the underlying modelling
principle used by Computer Aided Design (CAD) tools.
CAD tools represent models in terms of a tree of operations
and primitives, which could possibly be exported to gener-
ate a CSDF expression. To keep the evaluation cost low, one
could possibly remove details while the surface approxima-
tion error is below some threshold. However, we did not

1https://www.shadertoy.com/view/Xds3zN

found any tools for doing this automatically, nor do all the
shapes or operations employed in CAD software have sim-
ple distance functions: e.g. parametric surfaces.

4.2. Expressive power

Objects that consist of boolean operations between a few
primitives are suited for precise modelling. Furniture, me-
chanical parts, houses and street signs, are among some ob-
jects that fall in this category. IKEA furniture is particularly
suited (Fig. 1a), and sometimes come in variations that are
parametrizable (Fig. 1b). Mechanical parts (obtained from
[30]) tend to consist of a few primitives, often exhibiting
symmetries or repeated details, and are likewise straightfor-
ward to model (Fig. 1c). Residential housing also appears
to be suited for precise modelling (Fig. 1e).

Objects that consist of parametric surfaces, such as
NURBS (used in car and motorcycle design), are imprac-
tical to model precisely. The closest distance to such sur-
faces do not, in general, have a closed-form solution but
involve iterative root-finding or subdivision steps [51, 19].
Thus, although a precise model is possible with such algo-
rithms (c.f. isogeometric analysis [14]), the resulting dis-
tance function can be prohibitively expensive to evaluate.
If a coarser model is acceptable, a car chassis could be ap-
proximated with cubes and cylinders, and either a linear or
rounded union operation (Fig. 1d).

Modelling the image appearance of objects can be done
by defining a mapping from 3D points to color [45]. How-
ever, texture mapping requires parametrizing 3D space onto
the surface, which is difficult in general [39, chapter 7].

4.3. Implementation complexity

Once an object has been defined in terms of its underly-
ing primitives and operations, it must be made available in
a programming language in order to use it in algorithms.

One way to define CSDF objects is programmatically
as functions that accept a triplet of floating-point coordi-
nates and return a floating-point distance (see e.g. [37]).
This enables a uniform interface for algorithms that are ag-
nostic to the particular object and are only concerned with
the distance. Rigid-body transformation and scaling can
be done by transforming input points before invoking the
function, and scaling the return value appropriately. Most
programming languages support such interfaces: e.g. func-
tion pointers in C or classes in C++. A more abstract way
to store a CSDF is as a tree of primitives and operators
[31, 22], sometimes called a scene graph [45].

The size of the generated bytecode for an object depends
on many factors, such as the CPU instruction set and com-
piler settings, but can roughly be measured by the num-
ber of instructions. For example, counting addition and
subtraction (add), multiplication (mul), division and mod-
ulo (div), function calls (call), and min, max and abs

https://www.shadertoy.com/view/Xds3zN


(branch), a sphere (Eq. 3) can be written with three adds,
three muls, and one call (square root). The instruction
count for some more functions is shown in the table be-
low: e.g. the cross shaft (Fig. 5) consisted of eight calls,
five min/maxs and eight adds. If instructions are 32 bits
long, the cross shaft could be stored in roughly 100 bytes
(including constants and excluding called functions), which
is arguably smaller than a triangle mesh of corresponding
fidelity.

Function add mul div call branch
Sphere 3 3 0 1 0
Cylinder 3 2 0 1 2
Cube 3 3 0 1 14
CrossShaft 8 0 0 9 5

Table 1: Instruction count for some primitives

For complex objects, the cost of evaluating the exact
distance can be unwieldy. To mitigate this, one can use
bounding volume hierarchies; substituting objects by sim-
pler bounding shapes for points sufficiently far away [45].

4.4. Use in object detection methods

Once an object has been modelled, a natural goal is to
recover its pose and possibly additional parameters (such
as scale and deformation) from a scene. Recent object re-
covery pipelines tend to operate in two phases [50]: detec-
tion, where the category and coarse parameters of an object
are retrieved among possibly many objects; and refinement,
where the parameters are refined to best explain the obser-
vations. We now consider the first of these phases: how
CSDF objects can be detected in a scene.

Detect constituent primitives. Extracting primitives,
possibly only partially present, from point clouds is an im-
portant problem in surface reconstruction and reverse engi-
neering [3, 24, 48, 52]. Since CSDFs consist of combina-
tions of primitives, one could detect a complete object by
its constituent parts, in a similar way as how a set of 2D
image descriptors on a 3D object can enable recognizing a
particular object and its pose.

Match features from sampled surface. Aligning two
point clouds is a well-studied problem [32, 18] whose re-
sults could be used by point-sampling the CSDF surface
[26]. The resulting point cloud could be registered against a
target point cloud using standard methods: e.g. found in the
Point Cloud Library [32]. For sparse point clouds, such as
maps obtained from sparse SLAM methods, or self-similar
objects, such as cylinders, keypoint matching may be diffi-
cult; see Cieslewski et al. (2016) [12] and Drost et al. [18]
(2010) for a discussion.

Match volumetric features from SDF. While 3D key-
point descriptors have been of great use for registering point

clouds, similar descriptors have been derived for registering
SDF volumes directly [9], including generalized Harris cor-
ners, Shi-Tomasi descriptors and integral invariants. Such
descriptors could be computed from a continuous SDF as
well by sampling its domain in a volumetric grid.

Match image features from texture map. Despite the
difficulty, in general, to obtain a 2D parametrization for tex-
ture mapping, if such a map nevertheless is in place, one
can establish correspondences between pixels in the image
and 3D coordinates on the object, and thereby recover the
object using standard perspective-n-point methods [27, sec-
tion 5.5]. This also enables the use of bag-of-words models,
that have been useful in identifying a particular object from
a database of candidates [27, section 5].

Use CSDFs only for refinement. If the above methods
are impractical, one could use a seperate model for the de-
tection step and only use a CSDF model for precise param-
eter estimation. There are a variety of pipelines that consist
of a coarse detection step, such as proposing a 2D or 3D
bounding box and an object category, followed by a refine-
ment step, such as aligning a precise, deformable 3D model
to images and depths. For an overview of such pipelines,
see for example [10, 17, 25] for monocular images, [21] for
stereo images, and [43, 50, 56] for recovering objects from
depth and color images.

4.5. Use in refinement methods

Once the object class and a coarse estimate of its parame-
ters has been detected, it is desirable to obtain more precise
parameter estimates for accurate 3D analysis. In this sec-
tion we look at how CSDFs can fit into precise parameter
estimation methods for recovering objects and shape.

Cloud-cloud registration. Point cloud registration
methods typically obtain a coarse alignment by matching
3D keypoints, and then refine the alignment with the It-
erative Closest Point (ICP) algorithm [32]. Such methods
could be used directly with a CSDF representation, by sam-
pling its surface to generate a point cloud.

SDF-cloud registration. Some methods try to align
SDFs directly to point clouds: Bylow et al. (2013) and
Canelhas et al. (2013) [5, 8] represent a scene reconstructed
from RGBD measurements as a TSDF, and estimate frame-
to-frame camera motion by aligning the measured point
cloud (obtained from the depth camera) against the current
TSDF. The key idea being that, given a correct reconstruc-
tion and camera motion estimate, the measured point cloud,
once transformed into the correct coordinate frame, should
lie directly on the surface and have distances of zero. They
express this quality metric as a cost function to be mini-
mized with respect to the camera pose:

argmin
R,T

∑
p

f (Rp+ T )
2 (12)



This defines an optimization problem, which can be (at-
tempted) solved i.e. with the Gauss-Newton method [40].

A similar strategy can be used for CSDFs: the difference
being that CSDFs evaluate the distances directly instead of
trilinearly interpolating values in a grid. Aside from just
rotation and translation, one could define an optimization
problem over additional shape parameters:

arg min
R,T,k,c1,...,cn

∑
p

(f(Rpk + T ; c1, ..., cn)/k)
2 (13)

where Rpk+T is the transformation from scene coordinates
to scaled object and c1, ..., cn are shape control parameters.
The shape parameters could control the rotation and transla-
tion of smaller parts, to describe articulated objects, or they
could control the parameters of the primitives involved.

SDF-RGBD registration. Relying solely on 3D data
can be difficult when the scene reconstruction is sparse [49].
Hence, Dame et al. (2013) [17] include image appearance in
a similar optimization problem, to obtain precise pose and
shape of a deformable SDF. Their cost function both en-
courages 3D points to lie close to the SDF surface, and also
maximizes the discrimination between image background
and foreground. Such a method can be readily applied on
CSDFs, using e.g. sphere-tracing to render the surface.

SDF-RGB registration. Marchand et al. (2016) [36]
survey methods for object pose estimation from single im-
ages without depth, among them are optimization methods
that penalize distances between a projected silhouette of
the object and edges detected in the image. Such methods
could be applicable to CSDFs, by rendering the CSDF with
sphere-tracing to obtain its silhouette.

SDF-SDF registration. Slavcheva et al. (2016) [49]
use TSDF maps for dense SLAM and estimate frame-to-
frame camera motion by generating a TSDF from the in-
coming RGB-D frame, and then aligning both SDFs against
each other. They use an optimization approach where the
cost function includes the distance function discrepancy
summed over a common domain and a term that encour-
ages normals to be identical. A similar strategy could be
used to align a CSDF object against a discrete SDF map.

4.6. Use in mapping and analysis

Once a high-level description of the scene is recovered, it
is possible to exploit additional prior knowledge to improve
the mapping process or better inform the task at hand:

Reconstruction noise can be reduced by encouraging
the map to conform to object surfaces [2, 13, 44, 27]. The
CSDF representation can provide performance benefits by
providing the distance to the surface more efficiently than
meshes or point clouds, and is compatible with SDF fusion
methods (e.g. [17, 20]). On the other hand modelling de-
tailed objects can be impractical (e.g. [27] and [44]), both
in cost of evaluating the SDF and by means of acquiring it.

Motion planning algorithms often ask if a point is inside
or outside the collision geometry [41]. The CSDF represen-
tation provides this information directly, and can thus be
useful for such algorithms. Optimization-based algorithms
can also use the gradient to “push” trajectories away from
collision [41]. However, the direct evaluation cost might
make continuous SDFs inferior to discretized SDFs, de-
pending on the cost of compute versus memory access. This
could be mitigated with bounding volume hierarchies [45].

5. Outlook
In this paper we have seen that Continuous Signed Dis-

tance Functions can be a powerful modelling tool, similar
to that used in Computer Aided Design, with the ability to
describe a variety of man-made objects, including perfectly
curved surfaces, articulation and in-class variations, at con-
siderably lower storage cost than meshes, point clouds, or
discrete SDFs. This could be essential for scaling current
3D vision algorithms up to support the vast number of ob-
ject classes found in real-life. By being a distance function,
it also directly provides occupancy and the direction and
distance to the nearest surface, which is useful in mapping
and object recovery algorithms.

With even rudimentary tools, such as a text-editor, ob-
jects can be defined with Constructive Solid Geometry and
rigid and nonlinear transformations. While tools for CSDF
modelling are presently lacking, it seems feasible to con-
vert the CSG tree obtained from CAD software to a CSDF
expression, which would enable sophisticated tools. But,
while CSDFs can be converted to meshes or point clouds,
by isosurface extraction, going the other way is more dif-
ficult, which limits the use of existing object databases or
3D scanning to rapidly obtain models. There are however
user-guided solutions that can assist the modelling process.

Some limitations prevent widespread adoption. For one,
structurally complex objects or parametrized surfaces can
be impractical to model precisely due to lack of tools, and
the potentially large computational cost in evaluating their
exact distance. This could be mitigated if crude approxi-
mations are tolerable, or by using bounding volume hierar-
chies at the expense of complexity. Second, the difficulty
in acquiring a texture map over the surface of general ob-
jects prevents the use of established image-based methods
for recognition and pose and shape estimation.

We are nonetheless excited about the potential scalability
of this representation, and think it would be an interesting
research direction to replace low-level maps altogether with
CSG and CSDFs: e.g. in the form of a tree of operations and
primitives. Unlike discrete SDF volumes, this requires con-
siderably less storage, and inherits the benefits of distance
functions. This appears to necessitate a means of inferring a
CSG structure directly from images or depth measurements,
which could be a task suited for machine learning.
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