
Preface

This report is written as a compulsory part of the �ve-year MSc programme in Engineering
Cybernetics at NTNU. It has intentionally been written with a high IPI (information per inch)
in an attempt to maximize the likelihood of inspiring the reader with ideas.

Thanks to my supervisor Annette Stahl and to Edmund Førland Brekke for giving feedback along
the way and reviewing earlier drafts of this report.

Simen Haugo
Trondheim, June 2017

1

ABSTRACT
About 540 million years ago, an astonishing event occurred that caused evolution to ramp
up her production: the Cambrian explosion. It is believed that the evolution of eyes and,
subsequently, the knowledge of where one is and what the world looks like, had much to
do with it.

Simultaneous Localization and Mapping (SLAM) is an attempt to one-up nature using
human ingenuity, but despite substantial advances in recent years, current solutions still
fall short. For one, the representation of the information has a signi�cant e�ect on the
implementation di�culty of the tasks we want to perform. For example, to program an
autonomous car, it is not enough to have a point cloud of the immediate surroundings; to
plan paths and obey tra�c rules, we must know where the road is, where the lanes are,
and where other colleagues in the tra�c are. Such information can only be acquired by
imposing our world knowledge into the algorithms that are, otherwise, oblivious to these
concepts.

However, the ideal representation for this knowledge is still an open problem. This report
considers the problem of augmenting SLAM maps with fabricated objects, such as houses,
cars, furniture, rooms or teacups. In particular, we consider how these objects, of which
there is a tremendous variety, can be modelled. A good model representation should be
expressive, so as to describe many object classes; adaptable, so as to describe unseen varia-
tions; scalable, so as to be stored at a low memory cost; and usable, in the operations which
we wish to perform: such as detecting and recovering an object from the map, or exploiting
the information that an object’s existance provides.

Inspired by a procedural scene modelling technique in computer graphics, we investigate
the use of continuous signed distance functions to model objects as geometric primitives,
transformed and combined with well-known set operations from constructive solid geom-
etry, and deformations, such as scaling, rotation and translation. Unlike their discretized
counterpart, which although they have become an important tool in various �elds, the con-
tinuous distance function is stored as a mathematical expression, formed by computing
directly with analytic distance functions.

We show through experiments and surveys that this representation has several bene�ts:
such as being nearly compatible with highly sophisticated CAD tools; being �t for mod-
elling many indoor and outdoor objects with a few primitives; requiring orders of magni-
tude less memory than their discrete counterpart, without compression or loss of precision;
and being able to describe an in�nite variety of objects through controlling the parameters
of the constituent operations and primitives. Being a signed distance function, it also in-
herits their compelling bene�ts: such as de�ning, at each point in space, the direction and
distance to the nearest surface, and whether this point is inside or outside the surface.

2

SAMMENDRAG
Den kambriske eksplosjonen betegner den plutselige opprampingen av evolusjonen som
skjedde omtrent 540 millioner år siden, som medførte et stort antall nye skapninger. Det er
trodd at utviklingen av øyet og, derav, bevissthet om hvor en er og hvordan verden ser ut,
hadde mye å gjøre med saken.

Simultaneous Localization and Mapping (SLAM) er menneskets forsøk på å gjøre det samme
for våre maskiner, men til tross for store framskritt på dette problemet, så er nåværende
løsninger fremdeles ikke gode nok. For eksempel, for å programmere an selvkjørende bil, er
det ikke nok å ha en punktsky av dens umiddelbare omgivelser; for å planlegge kjøreruter
og adlyde tra�kkregler, må vi vite hvor veien og kjørefeltet er, samt hvor andre biler eller
objekter be�nner seg. Slik informasjon kan kun oppnås ved å tilføye vår kunnskap om
kultur og vår verden inn i algoritmer som, ellers, ikke har noe forhold til slike konsepter.

Derimot er den idelle representasjonen for slik kjennskap fremdeles et åpent problem.
Denne rapporten betrakter delproblemet om å tilføye til SLAM en modell av menneskeskapte
objekter, slik som hus, biler, møbler, rom eller tekopper. En god modell bør kunne beskrive
mange typer objekter; bør kunne beskrive usette variasjoner; bør ha lav lagringskostand;
og bør være nyttig i algoritmene vi ønsker å benytte den til: f.eks. oppdage objekter fra
rekonstruert geometri, eller utnytte objektets egenskaper for videre prosessering.

Inspirert av teknikker fra datagra�kk, ser vi på bruk av continuous signed distance functions
for å modellere objekter som en kombinasjon av geometriske primitiver, satt sammen
med constructive solid geometry og transformert med skalering, rotasjon og translasjon. I
motsetning til deres diskretiserte motpart, som har blitt et viktig verktøy i mange områder,
så er den kontinuerlige varianten lagret som et matematisk uttrykk, satt sammen av en
håndfull analytiske funksjoner og operasjoner.

Gjennom eksperimenter og litteraturundersøkelser, viser vi at denne representasjonen har
�ere fordeler: slik som å være kompatibel med CAD verktøy av høy kvalitet; er passende
for å modellere mange innendørs og utendørs objekter; trenger størrelsesordner mindre
lagringsminne enn dens diskrete motpart, uten komprimering eller tap av presisjon; og
har evne til å beskrive uendelig mange variasjoner ved å kontrollere parameterene til prim-
itivene og operasjonene som bygger opp objektet. I tillegg arves de ettertraktede egen-
skapene til avstandsfunksjoner ellers: avstand og retning til nærmeste over�ate, og om et
punkt er innenfor eller utenfor en over�ate, er informasjon som kjapt kan beregnes utifra
de�nisjonen.

3

CONTENTS
List of Tables . 5
List of Figures . 6
Reading guide . 7

1 Introduction 8
1.1 Related work . 11
1.2 Report structure . 14

2 Background 15
2.1 Continuous signed distance functions . 15

2.1.1 Distance metrics . 16
2.1.2 Describing scenes with distance functions 16
2.1.3 Converting between representations 21
2.1.4 Other considerations . 21

2.2 Simultaneous Localization and Mapping . 22
2.2.1 Point cloud SLAM . 22
2.2.2 SLAM as an optimization problem 22

3 Results 23
3.1 Ability to model real-life objects . 23

3.1.1 Experiment setup . 23
3.1.2 Modelling tools . 24
3.1.3 Expressive power . 24

3.2 Compatibility with detection methods . 28
3.2.1 Survey of object detection strategies 28

3.3 Compatibility with re�nement methods . 30
3.3.1 Strategies for precise parameter estimation 30

3.4 Assessing CSDFs for ICP-like re�nement . 32
3.4.1 Experiment setup . 33
3.4.2 Experiment results . 35

3.5 Use in post-processing . 37
3.5.1 Improving the mapping process . 37
3.5.2 Informing the task at hand . 38

4 Conclusion 39
4.1 Discussion of results . 39

4.1.1 Ability to model real-life objects . 39
4.1.2 Use in object recovery . 40
4.1.3 Use in post-processing . 41

4.2 Future work . 41

4

LIST OF TABLES
1 Frequently used words . 7
2 Frequently used symbols . 7
3 Frequently used abbreviations . 7
4 Rough instruction count for some primitives and operators 35

5

LIST OF FIGURES
1 Procedural rendering of a snail . 11
2 Distance function primitives . 17
3 Distance function operations . 18
4 Distance domain operations . 18
5 Example: Modelling a cross shaft . 19
6 Example: Domain repetition . 19
7 Nonlinear domain transformations . 19
8 Domain repetition and discontinuity . 20
9 Min, max and incorrect Euclidean distances 20
10 Min, max and smoothness . 20
11 Modelling table samples from IKEA . 25
12 Generating variations of an IKEA table . 25
13 Modelling mechanical parts from T-LESS dataset 26
14 Complicated mechanical parts . 26
15 Modelling cars and generating variations . 27
16 Modelling residential housing . 27
17 ICP alignment experiment procedure . 33
18 Scenes used for ICP alignment experiment 34
19 Models used for ICP alignment experiment 34

6

READING GUIDE
Definitions
Term Meaning
Reconstruction Obtaining a 3D representation of a scene from images.
Pose Rigid-body rotation and translation in 3D space.
Scale Relative scale of an object in the reconstructed scene.
Shape A speci�c instance within a class of parametrized object shapes.
Detection Obtaining coarse estimates of some parameters of an object model.
Re�nement Obtaining precise estimates of every parameter of the object model.
Registration Synonym of re�nement.
Recovery Determining the existence and precise parameters of an object.

Table 1: Frequently used words

Notations
Symbol Meaning
p,q Point in 3D space
P Set of reconstructioned 3D points
S Set of points on a surface
f Signed distance function
fS Signed distance function of S
R,T Rotation matrix and translation vector
k Object scale

Table 2: Frequently used symbols

Abbreviations
Term Meaning
SLAM Simultaneous Localization and Mapping
SDF Signed Distance Function
CSDF Continuous Signed Distance Function
TSDF Truncated Signed Distance Function
ICP Iterative Closest Point
CSG Constructive Solid Geometry
CAD Computer Aided Design
GUI Graphical User Interface
NURBS Non-Uniform Rational B-Spline

Table 3: Frequently used abbreviations

7

1 INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is the problem of building a model of the
environment (the map), and the estimation of the pose of the sensor(s) moving within it.
This is an important problem with applications in many areas, such as automotive, agricul-
ture and inspection, or, beyond robotics, in content creation, helping the visually impaired,
or facilitating search-and-rescue workers.

Attempts at solving this problem have predominantly represented the environment in
terms of a fairly low-level description, such as a collection of 3D points, a triangle mesh or
an occupancy grid. Although such descriptions are useful for underlying algorithms, they
fall short for further scene analysis. An important focus in recent research has therefore
been on building maps with high-level scene descriptions.

A high-level description has two-fold bene�ts. First, it facilitates the tasks that the user
wants to perform: query the the presence and location of objects, such as for path-planning,
obstacle avoidance or interaction; complete shapes from partial measurements, using prior
knowledge about geometry, such as for quality control or urban reconstruction; or identify
traversible terrain or scene category, such as being in a kitchen or on a highway, to inform
planning algorithms.

It also provides valuable information that can feed back into the mapping process: objects
and knowledge about their behaviour informs how their geometry should be treated: i.e.
as short-term or long-term landmarks [4]; prior knowledge about the scale and surfaces
of objects can be used to reduce noise or remove outliers [23], resolve the scale ambigu-
ity in monocular setups [33], identify occluded geometry [58], or compress the map [57];
higher-level landmarks can facilitate place recognition and loop-closure algorithms [7];
and additional structure can impose constraints to improve tracking accuracy or robust-
ness in adverse conditions [15, 44].

However, the ideal representation of higher-level structures is an open problem [7], as
the representations di�er in their descriptive power, storage and pre-processing require-
ments, modelling and processing complexity, scalability to larger scenes, and adaptability
to variations. An additional trade-o� has to be made as the properties associated with one
representation can make it more desirable over another for certain algorithms.

Representing the map in terms of objects modelled as combinations of geometric prim-
itives, such as cubes or cylinders, is an interesting direction that has not received much
attention in SLAM [7], despite having compelling properties. For one, primitives enable
very compact models that can still capture many elements in man-made environments. It
also provides an easy way to discern scenes and objects: i.e. by looking at the parameters
that de�ne the primitives.

8

My focus in this report is on a geometric modelling tool called continuous signed distance
functions (CSDF), that has been used extensively within computer graphics. It is based
on a principle of combining distance functions to well-known geometric primitives using
constructive solid geometry. I think this can be a useful tool for representing objects in
SLAM maps for the following reasons:

It is highly expressive

Simple and complicated shapes can be de�ned by combining and transforming geometric
primitives with constructive solid geometry: adding and subtracting shapes, applying rigid-
body transformations or other deformations: chamfering, blending, twisting or repetition.
Perfectly curved surfaces like cylinders or spheres, and in�nite geometry like planes or
half-open cubes can also be described. With extra e�ort, image appearance can be included
with procedural coloring, texture maps or other shading techniques.

It has compelling properties

Being a signed distance function, CSDFs directly provide the direction and distance to
the nearest surface from any point in space, as well as whether a point is inside or outside
the surface; information which would need expensive searches in meshes or point clouds,
possibly through complicated volume acceleration structures. This information is of great
use in many applications, such as robotic motion planning or optimization.

It is cheap to store

Unlike discretized SDFs that have been popular in many SLAM methods [19], CSDFs do not
su�er from their scalability issues since the surface can be de�ned directly with a handful
of mathematical expressions, thus requiring orders of magnitude less storage than uniform
3D grids and avoiding the need for complicated compression techniques [42, 9, 19].

Surfaces can be updated at zero cost

An in�nite variety of shapes can be generated on the �y by adjusting parameters that
control the combination and transformation of primitives, thus avoiding an expensive
process of updating an explicit surface or volumetric grid.

Models can be written down on a napkin

Modelling can be done as simply as with a text editor, thereby avoiding the need to install
special tools and learning how these operate, and possibly making it simpler to integrate a
modelling tool into an application. Models can also be portable, in that there is no need to
write exporters and importers to handle special binary or text formats; all that is needed is
to convert the mathematical functions to the programming language of choice.

9

In this report I investigate continuous signed distance functions as an object representation
for point cloud SLAM, and study their advantages and drawbacks in three areas:

� Use in object modelling: Are CSDFs useful for modelling objects found in man-made
environments? To answer this question I model some indoor and outdoor objects,
and study the authoring process and available tools, implementation complexity,
scalability and compatibility with existing object databases.

� Use in object recovery: Once an object has been modelled, a natural goal is to obtain
its pose and (optionally) additional shape parameters (like deformation or scale) in
the scene. I study the applicability of CSDFs for detection (determining the presence
and rough location of an object), and re�nement (determining the precise shape, pose
and scale of the object). I survey detection pipelines and discuss how CSDFs might �t
in. I also implement an ICP-like re�nement method and discuss problems that arise,
such as implementing CSDFs in code, and the e�ect of scale ambiguity and sparsity.

� Use in post-processing: Once an object has been recovered, it becomes possible to
exploit prior knowledge to improve the SLAM process or inform the task at hand. I
survey relevant applications where the representation can have a signi�cant impact,
and study the bene�ts and drawbacks that CSDFs have over other representations.

Why these three? As I discuss in Section 2, one is not necessarily stuck in any particular rep-
resentation as it is possible to convert meshes and point clouds to SDFs and vice versa. The
question of interest is therefore which representation do we use for what? The properties
of one representation might make it simpler or more e�cient for one task over another:
i.e. CSDFs might be suited for modelling, but less so for recovering objects. I think these
three areas — modelling, recovery and post-processing — cover the main uses in which the
choice of representation matters.

Why divide the recovery problem into detection and re�nement? I think detection is a prob-
lem that greatly bene�ts from domain knowledge: such as image appearance of objects,
possible objects in the scene, and so forth; ignoring knowledge that a user is likely to have
would be needlessly limiting. Why, then, should we consider the re�nement problem? After
all, if detection is best left to the user, shouldn’t they be recovering the pose themselves?
I think this dichotomy is useful because I see it be�tting recent object recovery pipelines:
methods based on machine learning are getting good at predicting the category and rough
location of an object in the scene, but, since these predictions alone fall short for further 3D
interaction, they are followed by a �ne alignment step against a 3D model of the object (see
related work in [62]).

Why point cloud SLAM? I would like to study this representation in other SLAM architec-
tures: meshes, voxel grids, planes, points and edges, or lines, are among a few of the map
representations, beyond point clouds, that have been used in SLAM. But such a study has
been deferred to future work, for now. Point cloud SLAM is nevertheless interesting on its
own, as it can be more applicable on power-, weight- and size-constrained platforms.

10

1.1 Related work
The work presented in this thesis lies at the intersection of several domains: computer
graphics and computer aided design; map representations and high-level scene descriptions
in 3D reconstruction and SLAM; surface reconstruction and reverse engineering; motion
planning and interaction. This section is meant to ground the work presented in a wider
research context and give an impression of how it relates to existing work, and where the
results might be useful.

Figure 1: An animated snail modelled by combining analytic distance functions to geometric
primitives, such as extruded bezier curves (to form the body and antennae) and logarithmic
spirals (to form the shell). The image was generated from a few hundred lines of code that
define the distance function to the snail and leaf, and rendered by ray-tracing each pixel
against the combined surface. Copyright Inigo Quilez.
Source: http://iquilezles.org/www/articles/sdfmodeling/sdfmodeling.htm (retrieved 2017).

Signed distance functions in computer graphics

Signed distance functions have become an important tool in robotics as well as many other
�elds. The inspiration for this thesis comes from their use in computer graphics, where
they have been used extensively in 4k demos1 to procedurally render complex scenes and
e�ects on a limited memory budget (Figure 1); modelling scenes with deformable nature-
like geometry [18]; or rendering high-quality text and 2D shapes [34]. Recent video game
engines are also experimenting with signed distance functions for storing and render-
ing scenes: Dreams by Media Molecule2 is an art game that uses geometric primitives as
“brushes” that the player can use to sculpt a scene. By representing the scene and the prim-
itives as signed distance functions, they are able to perform incremental scene updates at
real-time framerate, which would have been di�cult using triangle meshes. Moreover, the
properties of distance functions make them useful for lighting and shading, as computing
occlusions can be done e�ciently.

1An animated music video generated entirely from a 4096 byte executable
2http://www.mediamolecule.com/blog/article/siggraph_2015 (retrieved 2017)

11

http://iquilezles.org/www/articles/sdfmodeling/sdfmodeling.htm
http://www.mediamolecule.com/blog/article/siggraph_2015

Map representations in SLAM

Within 3D reconstruction and SLAM, signed distance functions have been discovered to be
particularly useful for merging depth camera measurements into one cohesive surface. The
truncated signed distance function (TSDF), popularized by Newcombe et al. [47], is currently
considered to be an important tool for high-quality dense 3D reconstruction [19], due to its
bene�cial properties for modelling continuous surfaces, dealing with noise, and for doing
incremental updates. While the continuous signed distance function (CSDF), considered in
this thesis, is stored as a mathematical expression, a TSDF is discretized as a 3D grid, each
cell being called a voxel. TSDFs are also truncated, meaning that distances beyond a certain
threshold are considered invalid; which is a useful property for compression.

The terminology here can be confusing: the prevalent de�nition of TSDFs is not the Eu-
clidean distance from a point in space to the nearest point on the surface, but rather the
distance along the rays of the sensor towards the surface: the projective distance [47, 19, 6,
50, 61, 10]. The motivation behind this is that the projective distance is much faster to com-
pute: given a set of 3D point measurements; each point can be transformed into the correct
coordinate frame by simple rotation and translation; and the distance is readily computed
as the vector length of each transformed point. Unlike computing the Euclidean SDF to a
set of 3D points, computing the projective distance is trivially parallelizable and thus suited
for GPU implementations. In contrast, the de�nition we will work with for CSDFs is that of
the Euclidean distance.

An issue with TSDFs is that they do not scale well to larger scenes as they require tremen-
dous storage [19]. Signi�cant research has been put into reducing their storage cost using
compression techniques [9, 19]. These come at the price of additional complexity, inaccu-
racy, or even artifacts. In contrast, CSDFs scale to simple and complex scenes at consider-
ably lower storage cost, especially when the surfaces involved are well approximated by
geometric primitives. To illustrate, consider a table consisting of a box and four cylinders;
storing the distance function as discrete grid would arguably be wasting space when the
distance can be readily computed from the primitives involved.

It would be interesting to study if CSDF expressions could be used to represent maps in
SLAM: incrementally building a tree of CSG operations on simple volumetric primitives,
resulting in a global signed distance function to the �nal surface. Similarily to TSDFs,
the surface can be incrementally updated by adding and subtracting shapes, without the
need to tessellate surfaces or handle topology changes; and the surface is continuous and
watertight. Being a distance function, it readily provides alignment error information that
can be used in motion estimation [6].

However, building a map in terms of CSG operations seems to necessitate a means of ob-
taining the operations and primitives from incoming measurements, such as images or
depth scans, so that they can be merged into the global CSG structure. Since that might
require a way of detecting and recovering individual objects, the focus in this thesis has
been on just that, and a further study on CSDF/CSG as a complete map representation has
been deferred to future work.

12

Incorporating prior world knowledge into SLAM

Incorporating prior world knowledge has been an important research topic within SLAM,
as it can better inform the task at hand, as well as improve the mapping process itself. One
way to impose prior knowledge is to assume a dominant structure: i.e. the presence of
a�ne surfaces [51], planes [23, 41] or cubes [40]; the scene being a room [70, 58]; the scene
being a corridor [68]; or a combination of these [15]. A description of the scene in terms of
the assumed structure is then recovered: i.e. the orientation and location of planes or cubes;
the 3D room layout; or the location of walls. Once in place, this higher-level description
can facilitate further 3D reasoning and also improve the tracking and mapping process: i.e.
increase robustness during motion with low parallax or in scenes with scarce texture, or
reduce noise by encouraging points to conform to known �at surfaces.

However, these methods are perhaps too narrow: for example, it would be interesting to
extend the work of Jiang et al. [40] to identify not only cubes, but also cylinders or other
primitives; or the work of Pinies et al. and Dzitsiuk et al. [51, 23] to identify piecewise-
planar structures whose parts are linked in a rigid manner, thus facilitating the detection of
more speci�c objects; or the work of Zhang et al. and Salas et al. [70, 58] to indoor layouts
beyond cubical rooms. The �ndings in this thesis may be useful for representing these
structures in a uniform way.

Extracting objects from SLAM maps

While the above is useful for coarse scene analysis, tasks involving interacting with objects
or avoiding obstacles bene�t from a more speci�c scene understanding: i.e. the presence
of objects such as furniture, vehicles, houses or teacups. Another way to impose prior
knowledge into SLAM has therefore been to extract known objects from the map: for
example, Galvez et al. (2016) [33] and Ramadasan et al. (2015) [55] scan real-life objects and
store them in a database, from which they are recovered online with SLAM.

The �ndings in this thesis may be useful for representing objects at a lower storage cost
and less complexity, and facilitate more powerful reasoning tools after extracting an object:
for example, signed distance functions have been useful in motion planning [50], as they
de�ne, for every point in space, the distance from a point to a surface, or the direction one
must travel to move away from obstacles. Such information can be di�cult to obtain using
point clouds or meshes, as they require expensive search methods.

Modelling deformable or articulated objects

The above methods demand that the object’s shape appears exactly the same as when
it was scanned; a limiting assumption, if the precise shape is unknown, such as for non-
rigid objects, or if it is impractical to store precise models for each instance, such as cars.
This has lead to methods that allow for some degree of variability. For example, Prisacariu
et al. (2013) [53] try to recover a 2D segmentation, the 3D pose and the precise shape of
an object observed in a single image. To constrain the problem, they create a deformable
model of objects up-front, where the space of possible shapes is obtained by statistical
analysis on a set of examples. These models are stored as discrete signed distance functions.
Similar models have been used by Zheng et al. (2015) [72] and Engelmann et al. (2016) [26].

13

However, storing a single object class with 100 shape parameters in a 256 × 256 × 256
SDF at 32-bit precision requires 6.4 gigabyte of memory. Since this scales rather poorly,
Prisacariu et al. [53] store the SDF in a compressed format which reduces the same data
down to 6 megabyte. However, compression introduces artifacts and additional complexity,
and decompression incurs a signi�cant performance hit during parameter estimation. In
contrast, continuous SDFs can describe articulated and deformable objects at the order of
hundreds of bytes whilst preserving the bene�ts inherent to distance functions, without
complicated compression schemes, artifacts or loss of precision.

Surface reconstruction and reverse engineering

Point clouds arise in industrial settings where objects of interest are mechanical parts.
However, point clouds obtained in this setting often contain holes due to specularities [3],
and lack a higher-level description necessary for further tasks, such as grasp planning or
surface inspection. Since mechanical parts tend to be formed with geometric primitives,
there has been a focus on recovering primitives from point clouds; under the name of
surface reconstruction or reverse engineering [3, 63, 60, 65].

The �ndings in this thesis can be useful for describing the large variety of objects in this
domain at a low storage cost; with the ability to describe perfectly curved surfaces; and
providing useful information such as the direction and distance to the closest point on a
surface from any point in space.

Modelling houses for urban reconstruction

Urban reconstruction is the problem of acquiring 3D models of cities or environments [46].
Accurate 3D models can be bene�cial for content creation, navigation through cities, pre-
serving cultural heritage sites, autonomous driving, or all sorts of civil protection or emer-
gency management. Many methods try to solve the problem by incorporating prior knowl-
edge about possible 3D structure: such as the shapes of houses and buildings or the repet-
itive and symmetric look of facades. However, the optimal representation of buildings re-
mains an open problem: the main challenge lies in the extreme variability and complexity
of urban scenes [39].

The �ndings in this thesis could be useful for modelling the overwhelming variety of ur-
ban structures, with an e�cient way of describing repeated details or symmetries, and
providing useful alignment error information for �tting the models to 3D measurements.

1.2 Report structure
I have in this introduction explained my motivation for studying this subject, and I summa-
rize my �ndings at the end of this report (Section 4). To allow for an easier understanding
of the results, I introduce the most important concepts in Section 2. If the results entice you
enough to want to use the ideas presented in your application — or I convince you other-
wise — but you question the validity of the results and want to scrutinize my experimental
methods, then you should read Section 3.

14

2 BACKGROUND
In this chapter I describe the concept of continuous signed distance functions, and illustrate
how they can de�ne simple and complex scenes using constructive solid geometry and
Euclidean transformations. Along with a short overview of simultaneous localization and
mapping, the chapter will have presented the basic theory necessary to understand the
experiments and results in this report.

2.1 Continuous signed distance functions
De�nition [30]: The distance function f (p) : R3 → R of a set of surface points S is de�ned
as the distance from p to the closest point in S:

f (p) = min
q∈S
| |p − q | | (1)

the surface itself being given by the level-set or iso-surface S = {p : f (p) = 0}, and the
distance | | · | | being some metric on R3. Signed distance functions (SDF) encode which
side a point is on by the sign of f , such as taking outside as positive and inside as negative.
Continuous signed distance functions (CSDF) are represented by a closed expression, unlike
their discretized counterpart, which are represented as sampled volumes.

A simple example of a continuous signed distance function is that of a sphere of radius r
centered at the origin. For any point p = (x, y, z) ∈ R3, the function f : R3 → R gives the
signed distance between p and the closest point on the surface of the sphere, and can be
written under the Euclidean distance metric as:

f (p) =
√

x2 + y2 + z2 − r (2)

The above is also an example of an implicit surface. While parametric surfaces or boundary
representations, such as that of a triangle mesh or a spline patch, is de�ned by a function
that, given parameters, produces a point in space, an implicit surface is de�ned by a func-
tion that, given a point in space, indicates whether the point is on the surface or not. In
general, this function does not de�ne a geometric distance. For example, we could have
described the sphere as the level-set of

f (p) = x2 + y2 + z2 − r2 (3)

which de�nes an algebraic distance. General implicit surfaces have a long history (see e.g.
[30] and references therein), but the particular subset of implicit surfaces de�ned by signed
distance functions have a number of useful properties for robotics, computer vision and
graphics. For example, unlike boundary representations, it is trivial to determine whether a
point is inside, on or outside a surface, as the function that gives this information is de�ned
everywhere in space. Further, the gradient of f (p) provides the surface normal if p is on
the surface, and the direction towards the closest point on the surface otherwise. Finally, in
the next sections, we will see that complicated surfaces can be described with constructive
solid geometry.

15

2.1.1 Distance metrics
The Euclidean distance l2 is frequently used because of its utility in many applications: i.e.
in collision detection and motion planning [50, 66], or in cost functions for shape align-
ment [38]. For one, it is rotation invariant, meaning that shapes look the same after rota-
tion. It is also smooth with respect to its variables, which is nice when computing gradients.
Other metrics can have advantages over the Euclidean norm [66]: for example, the max-
norm l∞ can in many cases be cheaper to compute, and in some cases much easier as well.

When referred to in the remainder of this report, unless the text speci�es otherwise, distance
functions are assumed to use the Euclidean l2 metric, keeping in mind that the results and
techniques presented may not be valid under other metrics.

2.1.2 Describing scenes with distance functions
Although distance functions have been derived for common geometric primitives, such
as the sphere, cube and cylinder (see [36] and Figure 2), deriving the distance function by
hand is not a strategy that scales to complicated scenes. Thankfully, by de�ning a member-
ship predicate over the entire domain, implicit surfaces are compatible with boolean op-
erators from constructive solid geometry (CSG). This allows us to combine primitives with
the well-known set operations: union, intersection, complement and di�erence. For signed
distance functions, these can be implemented with min and max functions (Figure 3):

intersection(S1,S2) := max(fS1 , fS2) (4)

union(S1,S2) := min(fS1 , fS2) (5)

complement(S) := − fS (6)

di�erence(S1,S2) := max(fS1 ,− fS2) (7)

Although the resulting distance function is not strictly Euclidean (Figure 9), it is often a
good approximation close to the surface [30]. Other implementations of the set operations
have been derived (see [28, 27]); these aim to strike a balance between accurately approxi-
mating the Euclidean distance and being di�erentiable everywhere.

A variety of domain operations are also possible [56]. Shapes can be rotated and trans-
lated with rigid-body transformations by applying the inverse transformation on the input
domain (Figure 4):

rotate(S,R) := fS (RT p) (8)

translate(S,T) := fS (p − T) (9)

Rotation and translation are examples of isometric transformations, meaning they do not
change the distance between two points. Examples of non-isometric transformations in-
clude twisting, blending or scaling. For example, an object can be scaled by applying the
(inverse) scale to the input domain like so:

scale(S, k) := fS (p/k) (incorrect)

16

but the resulting function no longer de�nes the distance in the original coordinate system.
For uniform scaling this is �xed by scaling the result appropriately:

scale(S, k) := fS (p/k)k (10)

Other deformations such as non-uniform scaling, twisting or blending cannot be repaired
to recover the correct distance function (Figure 7). Scaling factors can be derived that
nevertheless ensure that the distance function never overestimates [36].

Domain mirroring and repetition can describe visually complex objects by exploiting sym-
metry and duplicated details (Figure 5 and Figure 6). However, the resulting distance func-
tion may no longer be continuous, in that there can be a jump at the interface between the
repeated domains, which can cause distances to be overestimated (Figure 8). This can be
handled by ensuring that the object being repeated is symmetric about the plane orthogo-
nal to the axis of repetition, such that distances are exactly equal at the interface.

(a) Box (b) Sphere (c) Cylinder

(d) Torus (e) Triangular prism (f) Cone
Figure 2: Basic primitives whose Euclidean distance can be computed exactly in closed-
form. See the open-source hg_sdf library [45] for implementations of these primitives and
approximations for other primitives.

17

(a) Union (b) Intersection (c) Difference
Figure 3: Basic distance operations implemented with min and max functions.

(a) Rigid-body transformation (b)Mirroring about an axis (c)Mirroring about two axes

(d) Repeating in one axis (e) Repeating in two axes (f) Repeating in three axes

(g) Polar repetition (180◦) (h) Polar repetition (90◦) (i) Polar repetition (45◦)
Figure 4: Basic domain operations implemented with matrix- and vector multiplication
and addition on the input point (a); taking the absolute value of one or more of the input
coordinates (b,c); taking the modulus of one or more of the input coordinates (d,e,f); and
taking the modulus of the angle, obtained by atan, of two of the coordinates (g,h,i).

18

(a) Base (b) Notches (c) Flanges (d) Beams
Figure 5: A cross shaft modelled by subtracting one cylinder from a larger cylinder to form
the base; adding a tall, thin cylinder and repeating it with polar repetition to form the in-
ner notches; adding cylindrical flanges with a chamfered union; and combining multiple
cylinders and repeating them at 90 degree angles to form the beams.

(a) Cylindrical notch (b) Prism notch (c) Cube notch
Figure 6: Changes to the notch are automatically reflected everywhere.

(a) Bent cube (b) Screwed and bent cube (c) Inflated cube
Figure 7: More complex shapes can be modelled with nonlinear domain transformations,
however, the resulting function will no longer be a valid distance function. The error can
be visualized through the cut 2D distance field, by observing that isolines (red) no longer
describe a constant distance to the surface: in (c) the lines A and B, indicating the shortest
paths to the surface, are not the same length even they are on the same isoline. Note that
this error tends to be smaller near surface: see the nearest isolines in (c).

19

(a) Discontinuous interface (b) Continuous interface
Figure 8: Repetition will in general not preserve continuity and can cause distances to be
overestimated: On the left a rotated cube is repeated along one axis. A point P incorrectly
evaluates the distance to be toward the center cube, even though the shortest distance is in
fact up across the interface. On the right is shown a repeated cube where the distances are
equal on both sides of the domain interface, and thus no overestimation is done.

(a) Incorrect Euclidean distance (b) Correct Euclidean distance
Figure 9: The min or max of two Euclidean distance function do not always result in a Eu-
clidean distance: On the left is shown a cube with a smaller cube subtracted. Note the incor-
rect distance near the corners of the inner region.

(a) Hard union (b) Soft union
Figure 10: The min or max of two distance functions does not always preserve smoothness.
On the left (a) is shown the normal “hard” union (min) of two primitives. Note the kinks
where the two sets of isolines meet, in contrast to the “soft” union on the right (b). Some
implementations can be found in hg_sdf [45]. See also [27].

20

2.1.3 Converting between representations
It is sometimes necessary to convert one surface representation to another. Meshes and
point clouds can be generated from signed distance functions (and a broader class of im-
plicit functions) using iso-surface extraction methods, such as marching cubes or surface
nets, or by point-sampling the domain and relaxing points onto the surface along gradient
directions [30].

Although these representations could also be used to visualize the surface, sphere tracing is
an alternative that directly renders the surface by intersecting pixel rays with the surface
[36]. By exploiting the distance function properties, it can e�ciently traverse the space
in step sizes that are guaranteed to never overstep the surface, thus greatly increasing
e�ciency. Sphere tracing also enables point clouds to be extracted by sampling the surface
from one or more viewpoints. This is done in [67], where they sphere trace a discretized
SDF volume from three orthogonal directions, thus obtaining the point cloud that is visible
in each view.

Finally, while discrete SDFs can be generated from meshes and point clouds using distance
transform or level-set methods [30], generating a continuous SDF in the form of primitives
and CSG operations is an open problem that we will get back to in Section 3, when we
discuss the applicability of CSDFs for modelling.

2.1.4 Other considerations
Texture mapping. As has been done in the �gures above, the surface can be procedurally
colored, texture-mapped or shaded with computer graphics techniques by de�ning a map-
ping from 3D points to color [56]. This requires parametrizing 3D space onto the surface,
which, unfortunately, can be very di�cult [48, chapter 7].

Signed or unsigned. By removing the sign, we lose the ability to discern free space from
occluded space, a property which is used in some CSG operations (such as di�erence), and
which may otherwise be useful in other domains (such as motion planning [50]). Signed
distance functions also remain monotonic across the surface interface, not having a kink
like their unsigned counterpart. A kink could negatively a�ect the gradient computation
[56], which is used in surface shading and gradient-based optimization algorithms. Remov-
ing the sign also makes it harder to extract a surface mesh [52].

Smoothness. Di�erentiability of the distance function is not preserved under all opera-
tors, such as min and max. This can have a negative e�ect when used in algorithms that
compute the gradient, as it is not de�ned at junction points. A mitigation is to use smooth
blending operators (Figure 10) or smooth primitives (such as spheres and rounded cylinders
or cubes).

Computational cost. Complex distance functions can be expensive to evaluate. Bounding
volume hierarchies [56] can mitigate this issue by substituting expensive geometry with
a simpler distance bound, the result of which is that points far away from the surface can
evaluate the cheap bound, while points near the surface evaluate the exact distance.

21

2.2 Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) is the problem of building a model of the
environment (the map), and the estimation of the pose of the sensor(s) moving within it
(see [7] and references therein to learn about SLAM). It has been done with many sensors,
some notable ones being scanning lasers, depth cameras or digital color cameras; some
recent ones being event-based cameras or light-�eld cameras. When cameras are involved,
and high-quality mapping is of greater importance than the camera poses, the problem
is called Structure from Motion (SfM) or Multiview Stereo (MVS) [32]. If localization is of
greater importance than mapping, the problem is called Visual Odometry [59].

RGBD sensors (such as the Microsoft Kinect) measure color and depth, and are often used
when dense maps are wanted, that is, surfaces without holes everywhere [19]. Sometimes
RGB cameras are used, but dense maps are wanted anyway: recent work achieves this in
real-time on a CPU [35] using clever segmentation and smoothing tricks. Of particular
interest in this report, are SLAM methods that represent the map as a sparse point cloud:
that is, as a set of independent points. In this chapter we will brie�y de�ne the output of
such methods, and also de�ne SLAM as an optimization problem. These de�nitions will be
used when we discuss object recovery methods and post-processing.

2.2.1 Point cloud SLAM
De�nition. The output of a point cloud SLAM method is atleast one image, and depth values
or 3D coordinates associated with a subset of the pixels in atleast one of the images. This
de�nition is compatible with recent sparse methods [25, 24], and incompatible with dense
methods that use meshes, occupancy grids or discrete SDFs [19]. The availability of pixel
depths is considered to be equivalent to the availability of 3D coordinates, since 3D points
can be obtained by inverse projecting the pixels. The collection of 3D coordinates will be
referred to as the point cloud: mathematically we will write this as the set

P = {p ∈ R3}. (11)

2.2.2 SLAM as an optimization problem
Iterative optimization has become a tool of choice for recent SLAM methods [7]. These
methods recover 3D structure by de�ning a cost function based on reprojection error: that is,
given an image formation model and an estimate of the map and camera poses, the repro-
jection error is the discrepency between the measured data and the predicted data. Direct
methods de�ne this error on the level of image pixel intensities, while indirect methods de-
�ne a geometric error between point correspondences [24]. The best estimates of the map
and the camera poses are obtained, after an appropriate initialization, by minimizing repro-
jection error jointly with respect to a parametrization of the camera poses and the map, a
problem referred to as bundle adjustment [7] or reprojection error minimization. Aside from
reprojection error, the cost function can be augmented with additional terms, such as to
encourage spatial smoothness of the map or the camera trajectory, or to encourage points
to conform to a surface [23, 7].

22

3 RESULTS
This chapter presents my attempts at answering the research questions posed in the in-
troduction, the methods I used to obtain them, and what the precise goals of the studies
were. First, the use of continuous signed distance functions for modelling objects is studied
through a literature survey on available tools, and a qualitative experiment regarding the
expressive power. Then, the use of CSDFs for recovering objects from a 3D reconstruction
of a scene is studied through a survey on detection and re�nement methods, and there-
after a qualitative experiment of an ICP-like re�nement method. Finally, the bene�ts and
drawbacks of CSDFs for post-processing is studied through a survey and discussion.

3.1 Ability to model real-life objects
The following aspects were considered:

Modelling tools: What tools are available for creating CSDF models?

Expressive power: What objects and level of detail is suited for CSDF modelling?

This section presents the methods used to answer these questions, followed by a survey of
modelling tools, and a qualitative analysis of the expressive power.

3.1.1 Experiment setup
To assess the state of tools I searched the internet for queries including signed distance
function, sdf, tool, modelling, sculpting, edit, sphere tracing, raymarching, along with terms
related to CSG and CAD. I also searched Google Scholar for papers that cite the sphere-
tracing paper of John C. Hart [36], which was an in�uential work that popularized SDFs in
the demoscene community.

To assess the expressive power I looked at objects and judged to what degree I could model
them within a reasonable timespan. The following classes of objects were considered:

Household objects: Objects were sampled from the IKEA furniture catalogue and the
YCB dataset for robotic manipulation benchmarks (2015) [8].

Outdoor objects: Houses, vehicles and misc. objects were sampled from city pho-
tographs and the large dataset of object scans (2016) [13].

Mechanical parts: Objects were sampled from papers about textureless object recog-
nition and the T-LESS RGB-D dataset [37].

The following is a qualitative analysis, as lengths and angles were not accurately modelled,
nor was the model approximation error evaluated. The modelling process consisted of
writing the distance function by hand, using photos for reference and the hg_sdf library
[45] for CSDF primitives and operators, and visualizing the scene with a custom GUI.

23

3.1.2 Modelling tools
Text-editor. The most basic tool consists of a text-editor, in which code for the distance
function is written by hand, and a GUI that visualizes the scene. Examples of such tools can
be found on the ShaderToy website3, where the user can implement a distance function in
a C-like language and see the resulting scene rendered with realistic shading and lighting.

Graphical editor. Writing distance functions by hand can be time-consuming. Some tools
therefore try to mimic the interface of traditional modelling software. Reiner et al. (2011)
[56] made an editor with a live 3D view where primitives can be manipulated with a mouse
and keyboard. They support several modes of manipulation, including rigid-body transfor-
mation, scaling, and adjusting the primitive properties (i.e. a sphere’s radius) with sliders;
as well as the basic distance and space operators. Code for the resulting distance function
is automatically generated and exportable. A similar tool can be found online4.

3D scanning. An alternative to manual modelling is to use 3D scanning, which has con-
tributed to large object databases [13] in the form of meshes and point clouds. However, al-
though CSDFs can be converted to a mesh or point cloud, generating a CSG structure from
a boundary representation is ongoing research. Some recent work in this direction has
been done by Andrews et al. (2013) [1], who semi-automatically reverse-engineer meshes
into a CSG tree; and Fayolle et al. (2016) [28], who detect primitives from a point cloud, and
formulate an optimization problem to recover a CSG tree that combines the primitives to
best �t the point cloud.

CAD software. CSDFs are partially compatible with CAD software, since they share the
principle of combining primitives with CSG. These tools usually represent a model in
terms of a tree of CSG operations and primitives, which could possibly be exported to gen-
erate a CSDF expression. To prevent the CSDF expression from getting too complicated,
one could possibly remove details until the surface approximation error surpasses some
speci�ed threshold. However, I have not found any existing methods for doing this, nor do
all the shapes or operations employed in CAD software have a simple distance function:
for example, some CAD models mix parametric surfaces with CSG primitives.

3.1.3 Expressive power
Furniture, mechanical parts and houses. Objects whose design consists of boolean opera-
tions on a few primitives were modelled in a few minutes to a seemingly precise level of
detail. IKEA furniture was particularly suited (Figure 11), and sometimes came in varia-
tions that were parametrizable (Figure 12). Most of the mechanical parts were composed of
a few primitives, and were likewise straightforward to model (Figure 13). Some of the parts
consisted of ten or more primitives, and would be straightforward, but time-consuming,
to model (Figure 14). The mechanical parts tended to be symmetric or contain repeated
details, which was modelled with repetition operators. Residential housing were modelled
with less than ten primitives, mostly rotated cubes and planes, and bene�tted from mirror-
ing and repetition operators (Figure 16).

3https://www.shadertoy.com/view/Xds3zN (Retrieved 2017)
4https://stephaneginier.com/archive/editSDF (Retrieved 2016)

24

Cars and motorcycles. Objects that consist of parametric surfaces, such as NURBS, much
used in car or motorcycle design, are impractical to model precisely. The closest distance
to such surfaces do not, in general, have a closed-form solution but involve iterative root-
�nding or subdivision steps [64, 22]. Thus, although a precise model could be made with
such algorithms, doing so can make the distance function expensive to evaluate. If a
coarser model is acceptable, a car chassis could possibly be approximated with cubes and
cylinders, and either a linear or rounded union operation (Figure 15).

(a) IKEA BOKSEL (b) IKEA LACK (c) IKEA STOCKHOLM

(d) A small cube, mirrored and
translated to form two cubes,
is subtracted from a larger
cube; a small cube forms the
tiny drawer.

(e) Two thin cubes form the top
and bottom tables; a tall cube,
mirrored and translated, forms
the legs.

(f) One thin cylinder, mirrored
and translated, forms the top
table; one rotated and capped
cylinder, mirrored and trans-
lated, forms the legs.

Figure 11: Table samples from IKEA / Stue (2016)

(a) Adjusting width (b) Adjusting height (c) Adjusting bottom table offset
Figure 12: Variations of the IKEA LACK generated by adjusting parameters.

25

(a) T-LESS Object 02 (b) T-LESS Object 23 (c) T-LESS Object 23

(d) Cylinders and capped cones
form the body; a thin cylinder
with a spherical butt is sub-
tracted from the top; repeated
spheres subtracted around the
top form the grooves.

(e) A hollow cylinder is repeated
to form the sockets; Thin cylin-
ders underneath form the plug;
a box forms the flat junctions.

(f) The quotient from the domain
repetition can be used to add
instance-specific details, such as
the rotation of the socket.

Figure 13: Mechanical part samples from T-LESS

(a) T-LESS Object 08 (b) T-LESS Object 09 (c) T-LESS Object 10 (d) T-LESS Object 12
Figure 14: Complicated mechanical parts

26

(a) A car formed by taking a
rounded union between two
cubes, and forming the wheels
with cylinders.

(b) The same car with a linear
ramp union.

(c) A van formed by adjusting the
length of the upper cube.

Figure 15: Cars

(a) HOF (b) HVALSTAD (c) A block in Norway

(d) A traditional house formed
by intersecting a cube with two
rotated planes; and duplicating
and scaling that shape to form
the smaller part.

(e) A villa formed by intersecting
a cube with four rotated planes;
reusing the base shape from (a)
to form the top windows; and
subtracting a cube to form the
entrance.

(f) An apartment block formed
by reusing the base shape from
(a); adjusting its parameters to
stretch it; and repeating cubes to
form the balconies.

Figure 16: Residential housing. Photos (a) and (b) were sampled from BLINK HUS.

27

3.2 Compatibility with detection methods
I assume object recovery occurs in two stages: detection and re�nement. The re�nement
step assumes an initial guess for the object is available, but that it might be inaccurate or
wrong, so its aim is to validate the guess and produce higher accuracy estimates. Thus, the
usefulness of CSDFs for object recovery depends on their usefulness in these two areas.

Deferring the re�nement problem to the next section, the problem considered in this sec-
tion is: Given a 3D reconstruction (images and point depths) and one or more objects mod-
elled by CSDF expressions, determine the presence of a particular object in the reconstruc-
tion, and provide a coarse estimate of its parameters (atleast pose, but optionally also scale
and shape). To study the applicability of the CSDF representation for this problem, I did a
survey of detection methods, and point out how the representation �ts into such methods.

The survey was done by searching for recent object detection papers that contain overviews
of this large topic; searching for object-dataset papers and in particular how they obtain
ground truths; searching for papers on point cloud segmentation, surface reconstruction,
reverse engineering, and recovering primitives from point clouds; as well as papers related
to SLAM with TSDFs, since the problem of estimating camera motion between a TSDF and
a point cloud (or another TSDF) is similar to estimating the pose of an object.

3.2.1 Survey of object detection strategies
Detect constituent primitives

Extracting primitives from point clouds is an important research topic for surface recon-
struction [3] and reverse engineering [28, 65]. Schnabel et al. (2007) [60] and Toony et al.
(2015) [65] aim to extract volumetric primitives from point clouds, also when the primitives
are only partially present (such as for objects that are combinations of primitives). Since
CSDFs consist of combinations of primitives, one could detect a complete object by its con-
stituent parts, in a similar way as how a set of 2D image descriptors on a 3D object can
enable recognizing the existence of a particular object and its pose.

Match volumetric features from SDF

Aside from keypoint descriptors for point clouds, similar descriptors have been derived for
matching two SDF volumes directly [11], such as generalized Harris corners, Shi-Tomasi
descriptors and integral invariants. If the map were a SDF, i.e. obtained by computing the
distance transform on a point cloud, and the object is a CSDF, then object features could
possibly be extracted and matched against the map.

Match point cloud features from sampled surface

A vast body of literature can be found on the registration of two point clouds [38, 21] that
we can take advantage of by sampling the CSDF surfaces to generate point clouds. These
point clouds could then be registered against the map, using methods such as found in the
Point Cloud Library [38]. These methods typically work by obtaining a coarse alignment
by matching 3D keypoints, and then re�ning the alignment with ICP. For sparse point

28

clouds, such as obtained from sparse SLAM methods, or self-similar objects, such as cylin-
ders, keypoint matching may be di�cult; see Cieslewski et al. (2016) [14] and Drost et al.
[21] (2010) for a discussion.

Match image features from texture map

A CSDF object can be augmented with texture mapping to model its image appearance,
similar to textured meshes or point clouds. Once a texture is in place, with an associated
mapping from 3D object coordinates to texture coordinates, one can establish correspon-
dences between pixels in the image and 3D coordinates on the object, and thereby recover
the object using standard perspective-n-point methods [33, section 5.5]. This also enables
the use of bag-of-words models, that have been useful in identifying a particular objects
from a database of candidates [33, section 5].

Use CSDFs only for re�nement

For the above methods, it was assumed that the user had modelled objects in a CSDF repre-
sentation with the hope of using solely these models for the entire recovery task. However,
since these methods may be di�cult to use, one could instead use a seperate model for the
detection step, and only use the CSDF models for precise parameter estimation. There are
a variety of pipelines that consist of a coarse detection step, such as proposing a 2D or 3D
bounding box and an object category, followed by a re�nement step, such as aligning a
precise, deformable 3D model to images and depths. It is perhaps in these pipelines that
CSDFs �t in most naturally, as a replacement of the precise 3D model. The amount of litera-
ture in this domain is large, but for an overview you may consult the following papers that
use a coarse-to-�ne pipeline: [12, 20, 29] for monocular images, [26] for stereo images, and
[54, 62, 69] for recovering objects from depth with (maybe) color images.

29

3.3 Compatibility with refinement methods
Leading on the results from the previous section, the problem considered in this section is:
Given a 3D reconstruction (images and point depths), an initial pose and (optionally) scale
and shape parameters, �nd the model parameters that best explains the data according to
some quality metric. To study the applicability of the CSDF representation to this problem
I did a brief survey: looking at the literature found in the previous section and in particular
those that have detection and re�nement stages.

3.3.1 Strategies for precise parameter estimation
Cloud-cloud registration

Estimating a rigid-body transformation between two point clouds (also known as point
cloud registration) is a well studied problem (see [38] for an overview). The strategy used
in the Point Cloud Library (PCL) is to obtain an initial alignment by establishing 3D key-
point correspondences, and then re�ne the alignment using some variation of the Iter-
ative Closest Point (ICP) algorithm. Such methods could be used directly with a CSDF
representation, by sampling its surface to generate a point cloud.

SDF-cloud registration

Some methods try to align SDFs directly to point clouds: Bylow et al. (2013) and Canelhas
et al. (2013) [6, 10] represent a scene reconstructed from RGBD measurements as a TSDF;
they estimate frame-to-frame camera motion by aligning the measured point cloud (ob-
tained from the depth camera) against the current TSDF. The key idea being that, given a
correct reconstruction and camera motion estimate, the measured point cloud, once trans-
formed into the correct coordinate frame, should lie directly on the surface and have dis-
tances of zero. They express this quality metric as a cost function to be minimized with
respect to the camera pose:

argmin
R,T

∑
p

f (Rp + T)2 (12)

This particular cost function comes from a probabilistic point of view: assuming the mea-
surement noise in the depth camera is normally distributed and all pixels are independent
and identically distributed, the likelihood of observing the measured point cloud, given a
camera motion estimate, can be written as the product of normal distributions, and through
seeking the maximum likelihood and taking the negative log-likelihood we get the sum of
squared distances (see [6] for details).

This de�nes an optimization problem, which can be (attempted) solved in many ways5.
The authors of [6] decided to use the Gauss-Newton method [49], which is an iterative
algorithm that requires a su�ciently good starting guess. Other algorithms try to e�-
ciently search the parameter space to obtain a solution no matter where it starts. The
Gauss-Newton method requires the gradient of f at each point; but there are also algo-
rithms that don’t.

5 Optimization is used in many domains, such as machine learning, robotics and economics. It can be difficult toget right, so here are some thousand pages about the subject [5, 49].

30

The concept behind their approach — measuring solution quality by analyzing the distance
function evaluated at (transformed) point cloud points — is one that �ts with CSDFs: the
di�erence being that CSDFs evaluate the distances directly instead of trilinearly interpo-
lating values in a grid. The approach also naturally begs to be extended: aside from just
rotation and translation, we could try to recover scale and precise shape parameters by
solving the following minimization problem:

arg min
R,T ,k,c1, ...,cn

∑
p

f (Rpk + T ; c1, ...,cn)2 (13)

where Rpk + T is the transformation from scene coordinates to scaled object and c1, ...,cn
are shape control parameters. The shape parameters could for example control the rotation
and translation of smaller parts, to describe articulated objects, or they could control the
parameters of the primitives involved.

The above formulation is similar to ICP methods for point cloud registration: a di�erence
being that ICP �rst needs to pair points before calculating the distance between them;
another being that SDFs directly compute point-to-surface distances, whereas point pairs
only gives point-to-point distances: variants of ICP, deemed as more robust, have been
developed that do extra work to obtain point-to-plane or point-to-edge distances [38].

SDF-RGBD registration

The above method uses only 3D geometry, which, as noted by Slavcheva et al. (2016) [61],
can be unreliable when the reconstruction is sparse. Dame et al. (2013) [20] also use an
optimization approach, but include image appearance in their cost function, to determine
precise pose, scale and shape parameters of a deformable SDF volume. Their cost function
combines a term encouraging 3D map points to lie close to the SDF surface, and a term that
maximizes the discrimination between a statistical background/foreground image model.
Such a method could be readily applicable, by using sphere tracing to render the surface.

SDF-RGB registration

Some methods try to recover objects from a single image without depth information. Par-
ticularly, implicit representations have been used in model-based image segmentation [16],
where the aim is to �nd the optimal parameters of the model to satisfy some statistical
background/foreground discrimination. Marchand et al. (2016) [44] survey methods for
object pose estimation from single images, among them are optimization methods that
include in their cost function a term that penalizes distances between the projected silhou-
ette of the object and edges detected in the image. Such methods could be applicable to
CSDFs, by rendering the CSDF with sphere-tracing to obtain its silhouette.

SDF-SDF registration

Slavcheva et al. (2016) [61] use TSDF maps in dense SLAM and estimate frame-to-frame
camera motion by generating a TSDF for the incoming RGB-D frame, and then aligning
both SDFs with each other. Again, they use an optimization approach, where the cost func-
tion includes the distance function discrepency summed over the common domain and a
term that encourages normals to be identical. This strategy could be extended to CSDFs,
substituting their notion of a scene with an object.

31

3.4 Assessing CSDFs for ICP-like refinement
The survey in the previous section seemed to indicate that iterative closest point methods,
or in general methods based on minimizing a sum of point-to-surface distances, is the
dominant approach for precise parameter estimation. Motivated by this I investigated how
CSDFs apply in an ICP-like re�nement method. This resulted in an experiment where
I implemented a method similar to [6], but extended to recover scale as well. I defer the
recovery of shape variation parameters and the use of image data for alignment, to future
work. My goals were to study the following aspects:

Implementation complexity and scalability

The di�culty in designing and maintaining the implementation is a�ected by the object
representation: for example, meshes must be loaded and parsed into an appropriate struc-
ture for the algorithm, and will need additional code to extract information, such as search-
ing through volume acceleration structures to obtain distances. How can CSDF objects be
represented in a programming language, and how does it support the operations we need?
How does it scale when we deal with many objects or very dense point clouds?

The remaining questions are speci�c to my personal implementation of the particular
alignment method, for which the results may cast a light on the potential problems that
arise when implementing a correspondence-free, shape-based alignment method.

E�ect of object detail

In modelling a house there is obviously a choice that must be made as to how much detail
is enough. On the coarsest level one might describe the entire thing as a cube; or if that’s
too crude: a cube and a prism; then one could include the slight indentation that is made as
the roof meets the walls; going even further one could include the planks on the walls, the
subtle chamfering around the windowsills, the knob on the front door, and so forth. How is
the alignment a�ected by more or less model detail?

E�ect of point cloud density

Point cloud density can vary based on the SLAM method (dense or sparse) and the object
texture itself. I study the e�ect of density by attempting to recover objects of di�erent
texture, from a single �at color to a checkerboard.

E�ect of clutter

Other unmodelled objects might surround the object of interest; what e�ect does this have,
and how can it be mitigated?

E�ect of (not) knowing scale

Monocular SLAM methods do not provide the map in real scale, which leads to an ad-
ditional degree of freedom: the scale of the object relative to the map. If the scale were
known, for example with stereo or depth sensors, the alignment might be easier. I study
the e�ect of scale ambiguity by performing the alignment with and without scale freedom;
obtaining the correct scale by hand when used.

32

3.4.1 Experiment setup
The ability to recover objects from a point cloud depends on what the point cloud looks
like, and in particular, how it was obtained. I implemented a sparse direct SLAM method
based on recent work [25, 24]. This allowed me to obtain point clouds that have similar
noise and density properties as that of a modern sparse SLAM system.

I formulated the registration problem as: Given a (sub)set of points p ∈ P, a signed distance
function f (p) : R3 → R, �nd the rigid-body transformation R,T and scale k such that the
sum of squared distances between p and the surface,

E(R,T, k) =
∑
p∈P

(
f (Rpk + T)

k

)2
(14)

is minimized. Note the division by k to ensure that distances are measured in scene coor-
dinates instead of object coordinates. I solved the optimization problem using Levenberg-
Marquardt, a gradient-based method similar to that in [6]. I found that I needed a good
outlier rejection scheme and chose the Tukey M-estimator (see [71]). The gradient of f
was computed by �nite di�erences, but I could also have used automatic di�erentiation or
derived analytic derivatives.

Some objects have degenerate degrees of freedom: a cylinder can spin around its axis of
symmetry without a�ecting the cost. For these shapes we could parametrize the problem
with fewer variables, but I decided to simply add a damping term to the redundant vari-
ables, e�ectively locking them in place and incurring a cost if they move.

The alignment algorithm was implemented in C++, representing objects as function point-
ers: the common interface being that an object takes an object-space coordinate and re-
turns an object-space distance. This means that the alignment can be agnostic to the spe-
ci�c object that is being recovered.

I reconstructed real and synthetic scenes (Figure 18) and ran the alignment algorithm on
objects that were modelled by hand (Figure 19). I initialized the pose and scale by selecting
a bounding box in the image, computing the translation as the centroid of the contained
3D coordinates, and manually rotating and scaling the object close enough (see Figure 17).
I also set the point cloud subset P equal to the points within the selected bounding box.

(a) (b) (c)

Figure 17: The alignment procedure consists of three steps: (a) Manually draw a 2D bounding
box to select the point cloud subset and initialize the object translation, (b) Manually adjust
scale and rotation, and finally (c) Run some iterations of ICP.

33

(a) Cup (b) Candle

(c) Building (d) Untextured box

(e) Textured box (f) Textured box corrupted by monkey head
Figure 18: Scenes used in the recovery experiment with point subset highlighted.

(a) Cup (b) Candle (c) Building (d) Box
Figure 19: Models used in the recovery experiments

34

3.4.2 Experiment results
The following are my qualitative observations regarding the implementation and perfor-
mance of the alignment algorithm.

Implementation complexity

I found that I could de�ne CSDF objects under a uniform interface as functions that take a
triplet of �oating-point coordinates and return a �oating-point distance. The ICP alignment
algorithm can then be used with any object by taking a function pointer that adheres to the
(mathematical) interface f : R3 → R. Alternatively, instead of C function pointers, one can
achieve the same with object oriented programming, by letting speci�c objects be derived
classes of base classes and making the alignment algorithm be a polymorphic procedure.

This interface supports the rigid-body transformation and scaling operation needed when
evaluating the cost function, since they are domain operations that transform the input
coordinate: in other words, the algorithms simply transforms each input point before in-
voking the distance function, and scales the resulting distance appropriately.

Scalability

The size of the generated bytecode for an object depends on many factors, such as the CPU
instruction set and the compiler settings, but can coarsely be measured by the number
of instructions. For example, counting addition and subtraction (add), multiplication and
division (mul,div), function calls (call), and the branching operations (min,max,abs,mod),
a sphere, de�ned by √

x2 + y2 + z2 − r

can be written with three adds, three muls, and one call (square root). The instruction
count for some more functions is shown in the table below. Besides the trivial sphere, the
visually complex cross shaft (Figure 5) consisted of eight calls (six cylinders and two polar
repetitions), �ve min,maxs and eight adds. If each instruction is 32 bits long, the cross shaft
could be stored in roughly 100 bytes (including constants and excluding called functions),
which is arguably smaller than a triangle mesh of corresponding �delity.

Function add mul div call min,max,abs,mod

Sphere 3 3 0 1 0
Cylinder 3 2 0 1 2
Box 3 3 0 1 14
RepeatPolar 4 5 0 4 1
CrossShaft 8 0 0 9 5

Table 4: Rough instruction count for some primitives and operators

In their object recovery method [43], Lu Ma et al. represent deformable objects as discrete
SDF grids, at a resolution of 5123 cells, where each cell contains one 32-bit �oating point
number. A straightforward implementation (without compression) would then require

35

0.5 gigabyte per object. The object deformations are parametrized with principal compo-
nents obtained from examples, with each component corresponding to one grid. Storing,
for example, the �ve most important components would then require 2.5 gigabyte. In con-
trast, the IKEA table with adjustable parts (Figure 12) or the deformable car (Figure 15) can
be stored in about 100 bytes each, although the type of variations is limited to what can be
controlled by adjusting primitive and combination parameters.

Of course, size is not everything. The cost of evaluating the distance of complex objects
can quickly become unwieldy, and one might be better o� discretizing the CSDF. The per-
formance di�erence between evaluating a discretized SDF and a continuous one depends
on the relative latency of memory access versus compute instructions on the particular
machine, the access pattern (i.e. number of cache misses), and the compression strategy
used to store the SDF (i.e. if it is always stored in a compressed format).

E�ect of point cloud density

In Figure 18d the cube was untextured, and the reconstruction only captured points on
its edges. This made it di�cult to align the object without landing on a false local min-
imum. The reason being that the number of inliers was too low, causing the outlier re-
jection scheme to be overly optimistic and allow for far-away outliers to be members. In
contrast, �gure Figure 18e shows a checkerboard textured cube, for which the alignment
was more successful. The real life scenes were comparatively sparse, and the initialization
had to be fairly tight (roughly within 5% of object dimension in translation, and within ± 5
degrees in rotation) to ensure correct alignment.

E�ect of object detail

I found that alignment tended to be more successful when including the ground plane: the
box top underneath the candle and the cup, and the ground below the pillars.

E�ect of clutter

Clutter, such as the monkey head in Figure 18f, is the same as having outliers in the ini-
tial point subset. I found that the method still worked as long as the initial estimate was
su�ciently close to the correct geometry, thus the outlier threshold was set su�ciently
strict to reject the clutter. If, however, the number of outliers are comparatively many, the
alignment may erroneously include the clutter.

E�ect of (not) knowing scale

When the scale is unknown the alignment had a tendency to expand in�nitely, when there
was nothing preventing it from doing otherwise. In Figure 18e, the point cloud only cov-
ers half of the object surface causing the scale to be ill-constrained. Increasing the scale
will still keep all the member points on the surface at the same distance, thus neither in-
creasing nor decreasing the cost. However, due slight numerical imprecision in calculating
derivatives and such, the cost alternatingly increases and decreases by a small amount by
increasing the scale, causing jitter or in�ation.

36

3.5 Use in post-processing
Once an object or a high-level description of the scene is recovered, it becomes possible to
exploit additional prior knowledge to improve the mapping process or better inform the
task at hand. The following is a survey of some relevant applications and what bene�ts
or drawbacks continuous distance functions have over other scene representations (thus
enabling a discussion of the applications of CSDFs in post-processing).

The survey was conducted by searching for papers citing Hart (1996) [36], often these are
computer graphics papers; the papers of Curless and Levoy (1996) [17] and Frisken et al.
(2000) [31], often cited by computer vision and robotics papers (dense reconstruction in
particular); as well as the papers and included references of literature on SLAM and 3D
reconstruction, and particularly, SLAM using high-level objects or distance functions.

3.5.1 Improving the mapping process
Noise reduction. In a survey on surface reconstruction from point clouds Berger et al.
(2014) [2] review methods for imposing prior scene knowledge to reduce noise and �ll
holes. Among these is the detection and registration of primitives to the point cloud, and
registration of general rigid- or deformable 3D objects. Once such an object has been recov-
ered, a common way to incorporate its shape into the reconstruction is to add a regularizer
to the reprojection error minimization problem [55, 33, 15]: i.e. add a term that penalizes
discrepencies between the reconstruction and that of the object. Another method is to
directly replace parts of the reconstruction with that of the model [23, 20]: i.e. �t objects
(planes and deformable cars) to a TSDF reconstruction, and replace the TSDF values with
that of the distance to the object.

CSDF models could in this case provide performance bene�ts, in that the distance to the
object surface can be obtained more e�ciently than for meshes ([55]) or point clouds ([33]),
and is directly applicable to SDF fusion methods ([20, 23]). It could also reduce storage cost,
in that a large variety of shapes can be modelled and variations explicitly parametrized,
avoiding the scaling issues associated with detailed deformable models ([20]). On the other
hand, in some cases the object is quite detailed, which requires an accurate model. Since
modelling complex shapes can be impractical (both in cost of evaluating the SDF and by
means of acquiring it), CSDFs may be unsuited for use cases like [33] and [55].

Tracking stability. In addition to reducing reconstruction noise, objects can help constrain
the camera pose estimation as well [55, 33], which can be useful in adverse conditions,
such as during motions with low parallax or in textureless areas [51]. Again, CSDFs can
provide bene�ts to methods that use optimization, in that it can provide a point-to-surface
distance error directly. On one extreme, object pose estimation can replace the localization
part of a SLAM pipeline entirely, but such methods tend to rely on an image appearance
model [44], which is di�cult to combine with CSDFs (due to the need to parametrize 3D
space onto the object surface).

37

Indoor occlusion culling. Indoor environments pose a problem for SLAM methods because
signi�cant occlusion can occur, i.e. when turning a corner, which can prevent underlying
algorithms from determining point correspondences or computing accurate photoconsis-
tency [32, 58]. Salas et al. (2015) [58] (and references therein) take advantage of a descrip-
tion of the indoor room layout, to determine which points in the map are currently visible,
and can therefore avoid trying to establish point correspondences where there isn’t any.
As noted in their conclusion, they have only tested their approach in a simple setting of a
single cubical room. CSDF may be useful for describing a larger variety of room shapes to
a greater detail, and could enable the incorporation of simple approximations of furniture
at a lower cost than that of triangle meshes or point clouds. However, the algorithms for
estimating room layouts have hitherto not used a generic object-registration method, but
instead identify various global and local structures (such as dominant perpendicular planes
that make up the walls).

3.5.2 Informing the task at hand
Finally, we take a look at some applications where the CSDF representation may bene�t
the task at hand, that is, the task that the user of the SLAM system wishes to perform.

Scene understanding. Knowledge of where objects of interest are is greatly useful in many
applications: in motion planning, calculating optimal grasps, or recording extreme sports.
In many of these applications, a simple approximation of the shape is su�cient: such as ap-
proximating collision geometry with spheres and cubes [50] or approximating a graspable
object with a cylinder [7]. A CSDF representation can allow for the description of simple
objects with explicit shape parametrization, and can provide an easy way to discern objects
from each other by looking at the constituent primitives and their parameters.

Motion planning. Motion planning algorithms often rely on being able to determine whether
a point is inside or outside the collision geometry, that is, perform collision detection [50].
A CSDF representation provides a fast look-up of the occupancy with regard to simple or
complex shapes, which can facilitate algorithms like A* or RRT. Moreover, optimization-
based algorithms can use the gradient information, readily available, to “push” trajectories
out of collision [50]. Again, however, the cost of increasing object complexity might make
continuous SDFs inferior to discretized SDFs, the di�erence of which depends on the rel-
ative cost of compute (evaluating the distance) versus memory access (interpolating grid
values). This could be mitigated with bounding volume hierarchies, at the expense of losing
an accurate distance function globally (and instead only having accurate distances near
surfaces).

38

4 CONCLUSION
4.1 Discussion of results
4.1.1 Ability to model real-life objects

Modelling tools

We have seen that, by virtue of being compatible constructive solid geometry and support-
ing a variety of transformations, continuous signed distance functions are compatible with
a highly expressive modelling language similar to that of CAD software. With even very
rudimentary tools, such as a text-editor and a visualization window, both simple and com-
plex scenes can quickly be de�ned. Although currently available tools for creating CSDF
expressions directly are limited to unreleased research projects and online demos, it could
be possible to convert the CSG tree obtained from CAD software to a CSDF expression,
which would enable the use of very sophisticated modelling tools.

On the other hand, although CSDFs can be converted to meshes or point clouds by surface
extraction methods, thus being compatible with such pipelines, going the other way is
still an ongoing research endeavour, which prevents the use of large object databases that
already exist for meshes and point clouds, or the use of 3D scanning to obtain models from
real life. This can make it di�cult to acquire large sets of objects.

Expressive power

We have seen that objects whose design consists of combinations of a few primitives —
such as mechanical parts, IKEA furniture or residential housing — can be modelled pre-
cisely with CSDFs. Moreover, unlike meshes, CSDFs can describe smooth surfaces without
tessellation, as well as exploit domain repetition or mirroring to describe “template” - like
details that can be changed in one place and re�ected everywhere, thus greatly reducing
storage cost and modelling time. Additionally, shape variations can be explicitly controlled
with the parameters de�ning the primitives and the operations combining them, avoiding
expensive surface updates or the need to store large data structures. This property can be
of great use in tasks where the variety of shapes is tremendous, such as urban reconstruc-
tion, or recovering the shape and location of cars.

On the other hand, objects that consist of tens or hundreds of primitives will be unsuited,
as the cost of evaluating their distance grows with complexity. Although this could be
mitigated with bounding volume hierarchies, this comes at the cost of implementation com-
plexity and the loss of a precise distance �eld everywhere. Also, objects that are designed
with curves, such as NURBS surfaces, may be unsuited for precise modelling, as evaluat-
ing the distance to such surface require expensive iterative root-�nding or subdivision
methods.

39

4.1.2 Use in object recovery
Detection

Being an implicit representation, CSDFs are incompatible with correspondence-based reg-
istration methods, which are of great use in detecting and acquiring the coarse parameters
of objects from images or point clouds. Although one could convert a CSDF to a mesh
or point cloud, the di�culty in modelling textured image appearance limits their use to
shape-based registration, or image-registration for simple-colored objects. Within surface
reconstruction and reverse engineering literature we can �nd methods that try to detect
(partial) primitives from point clouds. Such methods could be used to detect objects rep-
resented as CSDFs, by detecting their constituent primitives. These methods do, however,
seem to require a su�ciently dense point cloud.

If a CSDF representation alone is insu�cient for detection, it is possible to use a seperate
representation for the detection step and reserve the CSDF representation for �ne registra-
tion and post-processing. For example, we have seen recent object detection methods that
use machine learning to build a 2D or 2D+3D appearance model, and provide a coarse 2D
or 3D bounding box for objects.

Fine registration

We have seen that objects modelled with CSDFs are compatible with ICP-like point cloud
registration methods, and can be more e�cient than mesh-to-cloud or cloud-to-cloud reg-
istration where correspondences must be explicitly formed. Moreover, with explicit shape
parametrization, CSDFs can be of great use in non-rigid or articulated object registration.
However, again, the di�culty in modelling image appearance can make �ne registration
di�cult, especially in sparse point clouds.

The objects I used in my experiments were relatively simple and their distance functions
were (mostly) exact Euclidean distances. I did not investigate the e�ect of overestimation
— such as caused by the min/max set operations, non-isometric deformations and non-
symmetric repetition — when the resulting function is used as an alignment error. For
example, Figure 8 shows how non-symmetric repetition can cause distances to be overesti-
mated across domain interfaces, which could cause points to have higher alignment error
than they actually do. These inaccuracies appear to be small when close to the surface, so
one could possibly substitute an object with a proper bound when far away so as to limit
the approximation error. One could also improve the distance estimate with the �rst order
distance approximation

f (p)
| |∇ f (p) | |

which can be used to estimate the distance to a generic implicit surface [28, section 5.3].
Neither did I investigate the e�ect of non-di�erentiability, such as caused by min/max or
found inside a hard-edge cube.

40

4.1.3 Use in post-processing
We have seen that SDFs have properties that can be considered complementary to meshes
and point clouds. They de�ne, in all of space, the distance and direction to the nearest sur-
face, the normal on the surface, as well as whether a point is on, outside or inside a shape.
These properties are of great use in motion planning, where the need to reason about col-
lision and nearby surfaces is used. CSDFs provide this information by evaluating a mathe-
matical expression; discrete SDFs provide this information by trilinear interpolation; and
meshes typically use raycasting through volume acceleration structures. However, the
cost of evaluating this expression can grow unwieldy for complex shapes, whereas the
cost of evaluating a discrete SDF stays the same. On the other hand, storing a CSDF can
be cheaper and simpler than a compressed discretized SDF. These same properties make
CSDFs compelling (or likewise unsuited) in optimization algorithms, such as used in noise
reduction, where the distance to the surface is used as a cost and evaluated for many points.

Finally, the great variety of shapes, simple and complex, that can be described and explic-
itly parametrized with CSDFs make them compelling for many tasks. For example, in mod-
elling indoor room layouts, where the knowledge of the room can provide occlusion or
visibility queues for indoor mapping; or in general scene modelling.

4.2 Future work
It would be interesting to try to generate CSDF expressions from a mesh or a point cloud.
If not fully automatically, perhaps semi-automatically by de�ning the desired primitives
and operators and automatically estimating the best parameters. This would enable 3D
scanning and the use of existing object databases. This is ongoing research, but recent
work seems promising [28].

On a related note, it would be interesting to represent the entire SLAM map using CSG and
CSDFs, perhaps in the form of a tree of operations and primitives. Such a representation
would inherit the bene�ts of distance functions, which have been bene�cial in high-quality
3D reconstruction, while requiring considerably less storage. This does seem to necessitate
a means of obtaining primitives and “operations” from images or depth measurements;
perhaps a task for Deep-Learning a�cionados.

Fine pose estimation using only shape appears to be di�cult, especially in sparse point
clouds. Pose estimation in denser map representations would be an interesting future
direction, as they could better constrain pose estimates. It would also be interesting to
investigate use of image appearance, such as texture mapping or simple uniform colors, or
to align against silhouette edges.

Denser maps could also enable estimation of even more parameters, such as those describ-
ing object shape variations. It would be interesting to more thoroughly investigate the use
of CSDFs for recovering deformable objects. One way to generate variations is by control-
ling the parameters of the constituent primitives and the operations applied to them. One
could possibly obtain from examples principal component-like vectors controlling these
parameters.

41

REFERENCES
[1] James Andrews. User-guided inverse 3d modeling. 2013.

[2] Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre Alliez, Joshua Levine,
Andrei Sharf, and Claudio Silva. State of the art in surface reconstruction from point
clouds. In EUROGRAPHICS star reports, volume 1, pages 161–185, 2014.

[3] Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guen-
nebaud, Joshua A Levine, Andrei Sharf, and Claudio T Silva. A survey of surface
reconstruction from point clouds. In Computer Graphics Forum. Wiley Online Library,
2016.

[4] Joydeep Biswas and Manuela M Veloso. Localization and navigation of the cobots
over long-term deployments. The International Journal of Robotics Research,
32(14):1679–1694, 2013.

[5] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[6] Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel Cremers. Real-time
camera tracking and 3d reconstruction using signed distance functions. In Robotics:
Science and Systems, 2013.

[7] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian Reid, and John J Leonard. Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age. IEEE Transactions on Robotics,
32(6):1309–1332, 2016.

[8] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and
Aaron M Dollar. Benchmarking in manipulation research: The ycb object and model
set and benchmarking protocols. arXiv preprint arXiv:1502.03143, 2015.

[9] Daniel R Canelhas, Erik Scha�ernicht, Todor Stoyanov, Achim J Lilienthal, and An-
drew J Davison. An eigenshapes approach to compressed signed distance �elds and
their utility in robot mapping. arXiv preprint arXiv:1609.02462, 2016.

[10] Daniel R Canelhas, Todor Stoyanov, and Achim J Lilienthal. Sdf tracker: A parallel
algorithm for on-line pose estimation and scene reconstruction from depth images. In
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
3671–3676. IEEE, 2013.

[11] Daniel R Canelhas, Todor Stoyanov, and Achim J Lilienthal. From feature detection
in truncated signed distance �elds to sparse stable scene graphs. IEEE Robotics and
Automation Letters, 1(2):1148–1155, 2016.

[12] Falak Chhaya, Dinesh Reddy, Sarthak Upadhyay, Visesh Chari, M Zeeshan Zia, and
K Madhava Krishna. Monocular reconstruction of vehicles: Combining slam with
shape priors. In Robotics and Automation (ICRA), 2016 IEEE International Conference
on, pages 5758–5765. IEEE, 2016.

42

[13] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large dataset of
object scans. arXiv:1602.02481, 2016.

[14] Titus Cieslewski, Elena Stumm, Abel Gawel, Mike Bosse, Simon Lynen, and Roland
Siegwart. Point cloud descriptors for place recognition using sparse visual informa-
tion. In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages
4830–4836. IEEE, 2016.

[15] Alejo Concha, Wajahat Hussain, Luis Montano, and Javier Civera. Incorporating scene
priors to dense monocular mapping. Autonomous Robots, 39(3):279–292, 2015.

[16] Daniel Cremers. Image segmentation with shape priors: Explicit versus implicit
representations. Handbook of Mathematical Methods in Imaging, pages 1909–1944,
2015.

[17] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 303–312. ACM, 1996.

[18] Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller, and Robert Jagnow.
A procedural approach to authoring solid models. In ACM Transactions on Graphics
(TOG), volume 21, pages 302–311. ACM, 2002.

[19] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian
Theobalt. Bundlefusion: Real-time globally consistent 3d reconstruction using on-
the-�y surface reintegration. ACM Transactions on Graphics (TOG), 36(3):24, 2017.

[20] Amaury Dame, Victor A Prisacariu, Carl Y Ren, and Ian Reid. Dense reconstruction
using 3d object shape priors. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1288–1295, 2013.

[21] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model globally, match
locally: E�cient and robust 3d object recognition. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 998–1005. Ieee, 2010.

[22] Eva Dyllong and Wolfram Luther. Distance calculation between a point and a nurbs
surface. Technical report, DTIC Document, 2000.

[23] Maksym Dzitsiuk, Jürgen Sturm, Robert Maier, Lingni Ma, and Daniel Cremers. De-
noising, stabilizing and completing 3d reconstructions on-the-go using plane priors.
arXiv preprint arXiv:1609.08267, 2016.

[24] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[25] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In European Conference on Computer Vision, pages 834–849. Springer,
2014.

43

[26] Francis Engelmann, Jörg Stückler, and Bastian Leibe. Joint object pose estimation
and shape reconstruction in urban street scenes using 3d shape priors. In German
Conference on Pattern Recognition, pages 219–230. Springer, 2016.

[27] Pierre-Alain Fayolle and Alexander Pasko. Distance to objects built with set opera-
tions in constructive solid modeling. In Proceedings of the 13th International Confer-
ence on Humans and Computers, pages 41–46. University of Aizu Press, 2010.

[28] Pierre-Alain Fayolle and Alexander Pasko. An evolutionary approach to the ex-
traction of object construction trees from 3d point clouds. Computer-Aided Design,
74:1–17, 2016.

[29] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. IEEE transactions on
pattern analysis and machine intelligence, 32(9):1627–1645, 2010.

[30] Sarah F Frisken and Ronald N Perry. Designing with distance �elds. In ACM SIG-
GRAPH 2006 Courses, pages 60–66. ACM, 2006.

[31] Sarah F Frisken, Ronald N Perry, Alyn P Rockwood, and Thouis R Jones. Adaptively
sampled distance �elds: A general representation of shape for computer graphics.
In Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, pages 249–254. ACM Press/Addison-Wesley Publishing Co., 2000.

[32] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial. Founda-
tions and Trends® in Computer Graphics and Vision, 9(1-2):1–148, 2015.

[33] Dorian Gálvez-López, Marta Salas, Juan D Tardós, and JMM Montiel. Real-time
monocular object slam. Robotics and Autonomous Systems, 75:435–449, 2016.

[34] Chris Green. Improved alpha-tested magni�cation for vector textures and special
e�ects. In ACM SIGGRAPH 2007 courses, pages 9–18. ACM, 2007.

[35] W Nicholas Greene, Kyel Ok, Peter Lommel, and Nicholas Roy. Multi-level mapping:
Real-time dense monocular slam. In Robotics and Automation (ICRA), 2016 IEEE Inter-
national Conference on, pages 833–840. IEEE, 2016.

[36] John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of
implicit surfaces. The Visual Computer, 12(10):527–545, 1996.

[37] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jirí Matas, Manolis Lourakis, and
Xenophon Zabulis. T-less: An rgb-d dataset for 6d pose estimation of texture-less
objects. In Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on,
pages 880–888. IEEE, 2017.

[38] Dirk Holz, Alexandru E Ichim, Federico Tombari, Radu B Rusu, and Sven Behnke.
Registration with the point cloud library: a modular framework for aligning in 3-d.
IEEE Robotics & Automation Magazine, 22(4):110–124, 2015.

44

[39] Hai Huang and Helmut Mayer. Towards automatic large-scale 3d building recon-
struction: Primitive decomposition and assembly. In International Conference on
Geographic Information Science, pages 205–221. Springer, 2017.

[40] Hao Jiang and Jianxiong Xiao. A linear approach to matching cuboids in rgbd images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2171–2178, 2013.

[41] Michael Kaess. Simultaneous localization and mapping with in�nite planes. In
Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 4605–
4611. IEEE, 2015.

[42] Matthew Klingensmith, Ivan Dryanovski, Siddhartha Srinivasa, and Jizhong Xiao.
Chisel: Real time large scale 3d reconstruction onboard a mobile device using spatially
hashed signed distance �elds. In Robotics: Science and Systems, 2015.

[43] Lu Ma and Gabe Sibley. Unsupervised dense object discovery, detection, tracking and
reconstruction. In European Conference on Computer Vision, pages 80–95. Springer,
2014.

[44] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose estimation for aug-
mented reality: a hands-on survey. 2016.

[45] mercury. hg_sdf: A glsl library for building signed distance functions. http://

mercury.sexy/hg_sdf/, 2016. [Online; accessed 27-May-2017].

[46] Przemyslaw Musialski, Peter Wonka, Daniel G Aliaga, Michael Wimmer, L v Gool, and
Werner Purgathofer. A survey of urban reconstruction. In Computer graphics forum,
volume 32, pages 146–177. Wiley Online Library, 2013.

[47] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgib-
bon. Kinectfusion: Real-time dense surface mapping and tracking. In Mixed and
augmented reality (ISMAR), 2011 10th IEEE international symposium on, pages 127–136.
IEEE, 2011.

[48] Ola Nilsson. Level-set methods and geodesic distance functions. PhD thesis, Linköping
Universisty Electronic Press, 2009.

[49] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[50] Helen Oleynikova, Alex Millane, Zachary Taylor, Enric Galceran, Juan Nieto, and
Roland Siegwart. Signed distance �elds: A natural representation for both mapping
and planning. In RSS Workshop on Geometry and Beyond, 2016.

[51] Pedro Pinies, Lina Maria Paz, and Paul Newman. Dense mono reconstruction: Liv-
ing with the pain of the plain plane. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pages 5226–5231. IEEE, 2015.

45

http://mercury.sexy/hg_sdf/
http://mercury.sexy/hg_sdf/

[52] Roi Poranne, Craig Gotsman, and Daniel Keren. 3d surface reconstruction using a
generalized distance function. In Computer Graphics Forum, volume 29, pages 2479–
2491. Wiley Online Library, 2010.

[53] Victor Adrian Prisacariu, Aleksandr V Segal, and Ian Reid. Simultaneous monocular
2d segmentation, 3d pose recovery and 3d reconstruction. In Asian Conference on
Computer Vision, pages 593–606. Springer, 2012.

[54] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate, robust to partial occlusion
method for predicting the 3d poses of challenging objects without using depth. arXiv
preprint arXiv:1703.10896, 2017.

[55] Datta Ramadasan, Thierry Chateau, and Marc Chevaldonné. Dcslam: A dynamically
constrained real-time slam. In Image Processing (ICIP), 2015 IEEE International Confer-
ence on, pages 1130–1134. IEEE, 2015.

[56] Tim Reiner, Gregor Mückl, and Carsten Dachsbacher. Interactive modeling of im-
plicit surfaces using a direct visualization approach with signed distance functions.
Computers & Graphics, 35(3):596–603, 2011.

[57] Radu Bogdan Rusu. Semantic 3D object maps for everyday robot manipulation.
Springer, 2013.

[58] Marta Salas, Wajahat Hussain, Alejo Concha, Luis Montano, Javier Civera, and JMM
Montiel. Layout aware visual tracking and mapping. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pages 149–156. IEEE, 2015.

[59] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE
robotics & automation magazine, 18(4):80–92, 2011.

[60] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. E�cient ransac for point-cloud
shape detection. In Computer graphics forum, volume 26, pages 214–226. Wiley Online
Library, 2007.

[61] Miroslava Slavcheva, Wadim Kehl, Nassir Navab, and Slobodan Ilic. Sdf-2-sdf: Highly
accurate 3d object reconstruction. In European Conference on Computer Vision, pages
680–696. Springer, 2016.

[62] Shuran Song and Jianxiong Xiao. Deep sliding shapes for amodal 3d object detection
in rgb-d images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 808–816, 2016.

[63] Aksel Sveier. Primitive shape detection in point clouds. Master’s thesis, NTNU, 2016.

[64] Jan B Thomassen, Pal H Johansen, and Tor Dokken. Closest points, moving surfaces,
and algebraic geometry. Mathematical methods for curves and surfaces: Tromsø, pages
351–362, 2004.

[65] Zahra Toony, Denis Laurendeau, and Christian Gagné. Pgp2x: Principal geometric
primitives parameters extraction. In GRAPP, pages 81–93. Citeseer, 2015.

46

[66] Gokul Varadhan, Shankar Krishnan, Young J Kim, Suhas Diggavi, and Dinesh
Manocha. E�cient max-norm distance computation and reliable voxelization. In
Symposium on geometry processing, pages 116–126, 2003.

[67] Thomas Whelan, Michael Kaess, Hordur Johannsson, Maurice Fallon, John J Leonard,
and John McDonald. Real-time large-scale dense rgb-d slam with volumetric fusion.
The International Journal of Robotics Research, 34(4-5):598–626, 2015.

[68] Shichao Yang, Yu Song, Michael Kaess, and Sebastian Scherer. Pop-up slam: Semantic
monocular plane slam for low-texture environments. In Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on, pages 1222–1229. IEEE, 2016.

[69] Xenophon Zabulis,Manolis IA Lourakis,and Panagiotis Koutlemanis.
Correspondence-free pose estimation for 3d objects from noisy depth data. The Visual
Computer, pages 1–19, 2016.

[70] Edward Zhang, Michael F Cohen, and Brian Curless. Emptying, refurnishing, and
relighting indoor spaces. ACM Transactions on Graphics (TOG), 35(6):174, 2016.

[71] Zhengyou Zhang. Parameter estimation techniques: A tutorial with application to
conic �tting. Image and vision Computing, 15(1):59–76, 1997.

[72] Shuai Zheng, Victor Adrian Prisacariu, Melinos Averkiou, Ming-Ming Cheng, Niloy J
Mitra, Jamie Shotton, Philip HS Torr, and Carsten Rother. Object proposals estimation
in depth image using compact 3d shape manifolds. In German Conference on Pattern
Recognition, pages 196–208. Springer, 2015.

47

	List of Tables
	List of Figures
	Reading guide
	Introduction
	Related work
	Report structure

	Background
	Continuous signed distance functions
	Distance metrics
	Describing scenes with distance functions
	Converting between representations
	Other considerations

	Simultaneous Localization and Mapping
	Point cloud SLAM
	SLAM as an optimization problem

	Results
	Ability to model real-life objects
	Experiment setup
	Modelling tools
	Expressive power

	Compatibility with detection methods
	Survey of object detection strategies

	Compatibility with refinement methods
	Strategies for precise parameter estimation

	Assessing CSDFs for ICP-like refinement
	Experiment setup
	Experiment results

	Use in post-processing
	Improving the mapping process
	Informing the task at hand

	Conclusion
	Discussion of results
	Ability to model real-life objects
	Use in object recovery
	Use in post-processing

	Future work

